首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 65 毫秒
1.
Independent Directed Triangles in a Directed Graph   总被引:2,自引:0,他引:2  
If D is a directed graph of order n≥3 with , then D contains independent directed triangles. Moreover, the condition on the minimum degree is sharp in general. Revised: April 19, 1999  相似文献   

2.
It has been shown [M.A. Henning, J. Southey, A note on graphs with disjoint dominating and total dominating sets, Ars Combin. 89 (2008) 159-162] that every connected graph with minimum degree at least two that is not a cycle on five vertices has a dominating set D and a total dominating set T which are disjoint. We characterize such graphs for which DT necessarily contains all vertices of the graph and that have no induced cycle on five vertices.  相似文献   

3.
Let G be a graph, and let D be a directed graph. Write G → D to mean that, no matter how the edges of G are given orientations, a copy of D must appear as a subgraph of the resulting oriented graph. It is proved that among all G for which G → D, the minimum chromatic number is equal to the minimum k for which Kk → hom(D), where hom(D) is the set of homomorphs of D. Next, necessary and sufficient conditions are given for a directed graph to have a homomorphism into a given transitive tournament, directed path, or directed cycle. These results are then applied to various cases of the above theorem. In particular, the minimum chromatic number is evaluated whenever D is an oriented forest, and all D are characterized for which the minimum chromatic number is no more than three.  相似文献   

4.
 It is well known that the comparability graph of any partially ordered set of n elements contains either a clique or an independent set of size at least . In this note we show that any graph of n vertices which is the union of two comparability graphs on the same vertex set, contains either a clique or an independent set of size at least . On the other hand, there exist such graphs for which the size of any clique or independent set is at most n 0.4118. Similar results are obtained for graphs which are unions of a fixed number k comparability graphs. We also show that the same bounds hold for unions of perfect graphs. Received: November 1, 1999 Final version received: December 1, 2000  相似文献   

5.
Let D be a directed graph with vertex set V, arc set A, and order n. The graph underlyingD is the graph obtained from D by replacing each arc (u,v)∈A by an undirected edge {u,v} and then replacing each double edge by a single edge. An anti-directed (hamiltonian) cycleH in D is a (hamiltonian) cycle in the graph underlying D such that no pair of consecutive arcs in H form a directed path in D. An anti-directed 2-factor in D is a vertex-disjoint collection of anti-directed cycles in D that span V. It was proved in Busch et al. (submitted for publication) [3] that if the indegree and the outdegree of each vertex of D is greater than then D contains an anti-directed Hamilton cycle. In this paper we prove that given a directed graph D, the problem of determining whether D has an anti-directed 2-factor is NP-complete, and we use a proof technique similar to the one used in Busch et al. (submitted for publication) [3] to prove that if the indegree and the outdegree of each vertex of D is greater than then D contains an anti-directed 2-factor.  相似文献   

6.
In this article, we prove that a line graph with minimum degree δ≥7 has a spanning subgraph in which every component is a clique of order at least three. This implies that if G is a line graph with δ≥7, then for any independent set S there is a 2‐factor of G such that each cycle contains at most one vertex of S. This supports the conjecture that δ≥5 is sufficient to imply the existence of such a 2‐factor in the larger class of claw‐free graphs. It is also shown that if G is a claw‐free graph of order n and independence number α with δ≥2n/α?2 and n≥3α3/2, then for any maximum independent set S, G has a 2‐factor with α cycles such that each cycle contains one vertex of S. This is in support of a conjecture that δ≥n/α≥5 is sufficient to imply the existence of a 2‐factor with α cycles, each containing one vertex of a maximum independent set. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 251–263, 2012  相似文献   

7.
A number of combinatorial problems are treated using properties of abelian null-square-generated and idempotent-generated subalgebras of Clifford algebras. For example, the problem of deciding whether or not a graph contains a Hamiltonian cycle is known to be NP-complete. By considering entries of Λk, where Λ is an appropriate nilpotent adjacency matrix, the k-cycles in any finite graph are recovered. Within the algebra context (i.e., considering the number of multiplications performed within the algebra), these problems are reduced to matrix multiplication, which is in complexity class P. The Hamiltonian cycle problem is one of many problems moved from classes NP-complete and #P-complete to class P in this context. Other problems considered include the set covering problem, counting the edge-disjoint cycle decompositions of a finite graph, computing the permanent of an arbitrary matrix, computing the girth and circumference of a graph, and finding the longest path in a graph.  相似文献   

8.
A digraph D is (p,q)-odd if and only if any subdivision of D contains a directed cycle of length different from p mod q. A characterization of (p,q)-odd digraphs analogous to the Seymour-Thomassen characterization of (1, 2)-odd digraphs is provided. In order to obtain this characterization we study the lattice generated by the directed cycles of a strongly connected digraph. We show that the sets of directed cycles obtained from an ear decomposition of the digraph in a natural way are bases of this lattice. A similar result does not hold for undirected graphs. However we construct, for each undirected 2-connected graph G, a set of cycles of G which form a basis of the lattice generated by the cycles of G. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
A kernel of a directed graph is a set of vertices K that is both absorbant and independent (i.e., every vertex not in K is the origin of an arc whose extremity is in K, and no arc of the graph has both endpoints in K). In 1983, Meyniel conjectured that any perfect graph, directed in such a way that every circuit of length three uses two reversible arcs, must have a kernel. This conjecture was proved for parity graphs. In this paper, we extend that result and prove that Meyniel's conjecture holds for all graphs in which every odd cycle has two chords.  相似文献   

10.
A graph is called fragile if it has a vertex cut which is also an independent set. Chen and Yu proved that every graph with n vertices and at most 2n?4 edges is fragile, which was conjectured to be true by Caro. However, their proof does not give any information on the number of vertices in the independent cuts. The purpose of this paper is to investigate when a graph has a small independent cut. We show that if G is a graph on n vertices and at most (12n/7)?3 edges, then G contains an independent cut S with ∣S∣≤3. Upper bounds on the number of edges of a graph having an independent cut of size 1 or 2 are also obtained. We also show that for any positive integer k, there is a positive number ε such that there are infinitely many graphs G with n vertices and at most (2?ε)n edges, but G has no independent cut with less than k vertices. © 2002 Wiley Periodicals, Inc. J Graph Theory 41: 327–341, 2002  相似文献   

11.
The vertex set of a digraph D is denoted by V(D). A c-partite tournament is an orientation of a complete c-partite graph. In 1991, Jian-zhong Wang conjectured that every arc of a regular 3-partite tournament D is contained in directed cycles of all lengths 3,6,9,…,|V(D)|. This conjecture is not valid, because for each integer t with 3?t?|V(D)|, there exists an infinite family of regular 3-partite tournaments D such that at least one arc of D is not contained in a directed cycle of length t.In this paper, we prove that every arc of a regular 3-partite tournament with at least nine vertices is contained in a directed cycle of length m, m+1, or m+2 for 3?m?5, and we conjecture that every arc of a regular 3-partite tournament is contained in a directed cycle of length m, (m+1), or (m+2) for each m∈{3,4,…,|V(D)|-2}.It is known that every regular 3-partite tournament D with at least six vertices contains directed cycles of lengths 3, |V(D)|-3, and |V(D)|. We show that every regular 3-partite tournament D with at least six vertices also has a directed cycle of length 6, and we conjecture that each such 3-partite tournament contains cycles of all lengths 3,6,9,…,|V(D)|.  相似文献   

12.
 A well-known and essential result due to Roy ([4], 1967) and independently to Gallai ([3], 1968) is that if D is a digraph with chromatic number χ(D), then D contains a directed path of at least χ(D) vertices. We generalize this result by showing that if ψ(D) is the minimum value of the number of the vertices in a longest directed path starting from a vertex that is connected to every vertex of D, then χ(D) ≤ψ(D). For graphs, we give a positive answer to the following question of Fajtlowicz: if G is a graph with chromatic number χ(G), then for any proper coloring of G of χ(G) colors and for any vertex vV(G), there is a path P starting at v which represents all χ(G) colors. Received: May 20, 1999 Final version received: December 24, 1999  相似文献   

13.
A kernel of a digraph D is an independent and dominating set of vertices of D. A chord of a directed cycle C = (0, 1,…,n, 0) is an arc ij of D not in C with both terminal vertices in C. A diagonal of C is a chord ij with ji − 1. Meyniel made the conjecture (now know to be false) that if D is a diagraph such that every odd directed cycle has at least two chords then D has a kernel. Here we obtain some properties of claw-free M-oriented critical kernel-imperfect digraphs. As a consequence we show that if D is an M-oriented K1,3-free digraph such that every odd directed cycle of length at least five has two diagonals then D has a kernel. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
A graph is fraternally oriented iff for every three vertices u, ν, w the existence of the edges uw and ν → w implies that u and ν are adjacent. A directed unicyclic graph is obtained from a unicyclic graph by orienting the unique cycle clockwise and by orienting the appended subtrees from the cycle outwardly. Two directed subtrees s, t of a directed unicyclic graph are proper if their union contains no (directed or undirected) cycle and either they are disjoint or one of them s has its root r(s) in t and contains all the successors of r(s) in t. In the present paper we prove that G is an intersection graph of a family of proper directed subtrees of a directed unicyclic graph iff it has a fraternal orientation such that for every vertex ν, Ginν) is acyclic and G(Γoutν) is the transitive closure of a tree. We describe efficient algorithms for recognizing when such graphs are perfect and for testing isomorphism of proper circular-arc graphs.  相似文献   

15.
We prove that every digraph D with n≥7, n≥+6 vertices and at least (nk−1)(n−1)+k(k+1) arcs contains all symmetric cycles of length at most nk−2, an almost symmetric cycle of length nk−1, and with some exceptions, also an almost symmetric cycle of length nk. Consequently, D contains all orientations of cycles of length at most nk, unless D is an exception. The research was partially supported by the AGH University of Science and Technology grant No 11 420 04  相似文献   

16.
A set D of vertices of a graph G = (V, E) is called a dominating set if every vertex of V not in D is adjacent to a vertex of D. In 1996, Reed proved that every graph of order n with minimum degree at least 3 has a dominating set of cardinality at most 3n/8. In this paper we generalize Reed's result. We show that every graph G of order n with minimum degree at least 2 has a dominating set of cardinality at most (3n +IV21)/8, where V2 denotes the set of vertices of degree 2 in G. As an application of the above result, we show that for k ≥ 1, the k-restricted domination number rk (G, γ) ≤ (3n+5k)/8 for all graphs of order n with minimum degree at least 3.  相似文献   

17.
Let D be a directed graph of order 4k, where k is a positive integer. Suppose that the minimum degree of D is at least 6k ? 2. We show that D contains k disjoint directed quadrilaterals with only one exception. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

18.
A kernel of a digraphD is a set of vertices which is both independent and absorbant. In 1983, C. Berge and P. Duchet conjectured that an undirected graphG is perfect if and only if the following condition is fulfilled: ifD is an orientation ofG (where pairs of opposite arcs are allowed) and if every clique ofD has a kernel thenD has a kernel. We prove here the conjecture for the complements of strongly perfect graphs and establish that a minimal counterexample to the conjecture is not a complete join of an independent set with another graph.  相似文献   

19.
Motivated by earlier work on dominating cliques, we show that if a graph G is connected and contains no induced subgraph isomorphic to P6 or Ht (the graph obtained by subdividing each edge of K1,t, t ≥ 3, by exactly one vertex), then G has a dominating set which induces a connected graph with clique covering number at most t − 1. © 1997 John Wiley & Sons, Inc. J Graph Theory 25: 101–105, 1997  相似文献   

20.
This paper investigates the number of random edges required to add to an arbitrary dense graph in order to make the resulting graph hamiltonian with high probability. Adding Θ(n) random edges is both necessary and sufficient to ensure this for all such dense graphs. If, however, the original graph contains no large independent set, then many fewer random edges are required. We prove a similar result for directed graphs. © 2002 Wiley Periodicals, Inc. Random Struct. Alg., 22: 33–42, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号