首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new polytopic ligands L1 and L2 have been synthesized. They consist of a central tren unit to which three 1,4,7,10-tetraazacyclododecane rings are attached via an ethylene and a trimethylene bridge, respectively. The complexation properties of L1 and L2 towards Cu(2+) and Ni(2+) were studied by potentiometric pH titration, UV-Vis, EPR spectroscopy and kinetic techniques. As a comparison, the Cu(2+) and Ni(2+) complexes with L3 (1-(N-methyl-2-aminoethyl-1,4,7,10-tetraazacyclododecane)) were also investigated. The crystal structures of [CuL3H(H(2)O)](ClO(4))(3) and [NiL3Cl](ClO(4)) were solved and show that the side chain in its protonated form is not involved in coordination, whereas deprotonated it binds to the metal ion. The thermodynamically stable 3:1 complexes of L1 or L2 have a metal ion in the three macrocyclic units. However, when three equivalents of Cu(2+) are added to L1 or L2 the metal ion first binds to the tren unit and only then to the macrocycles. The kinetics of the different steps of complexation have been studied and a mechanism is proposed.  相似文献   

2.
The synthesis of a new oxaaza macrocyclic ligand, L, derived from O(1),O(7)-bis(2-formylphenyl)-1,4,7-trioxaheptane and tren containing an amine terminal pendant arm, and its metal complexation with alkaline earth (M = Ca(2+), Sr(2+), Ba(2+)), transition (M = Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+)), post-transition (M = Pb(2+)), and Y(3+) and lanthanide (M = La(3+), Er(3+)) metal ions are reported. Crystal structures of [H(2)L](ClO(4))(2).3H(2)O, [PbL](ClO(4))(2), and [ZnLCl](ClO(4)).H(2)O are also reported. In the [PbL] complex, the metal ion is located inside the macrocyclic cavity coordinated by all N(4)O(3) donor atoms while, in the [ZnLCl] complex, the metal ion is encapsulated only by the nitrogen atoms present in the ligand. pi-pi interactions in the [H(2)L](ClO(4))(2).3H(2)O and [PbL](ClO(4))(2) structures are observed. Protonation and Zn(2+), Cd(2+), and Cu(2+) complexation were studied by means of potentiometric, UV-vis, and fluorescent emission measurements. The 10-fold fluorescence emission increase observed in the pH range 7-9 in the presence of Zn(2+) leads to L as a good sensor for this biological metal in water solution.  相似文献   

3.
New dioxadiaza- and trioxadiaza-macrocycles containing one rigid dibenzofuran unit (DBF) and N-(2-aminoethyl) pendant arms were synthesized, N,N'-bis(2-aminoethyl)-[17](DBF)N(2)O(2) (L(1)) and N,N'-bis(2-aminoethyl)-[22](DBF)N(2)O(3) (L(2)), respectively. The binding properties of both macrocycles to metal ions and structural studies of their metal complexes were carried out. The protonation constants of both compounds and the stability constants of their complexes with Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), and Pb(2+) were determined at 298.2 K, in aqueous solutions, and at ionic strength 0.10 mol dm(-3) in KNO(3). Mononuclear complexes with both ligands were formed, and dinuclear complexes were only found for L(2). The thermodynamic binding affinities of the metal complexes of L(2) are lower than those of L(1) as expected, but the Pb(2+) complexes of both macrocycles exhibit close stability constant values. On the other hand, the binding affinities of Cd(2+) and Pb(2+) for L(1) are very high, when compared to those of Co(2+), Ni(2+) and Zn(2+). These interesting properties were explained by the presence of the rigid DBF moiety in the backbone of the macrocycle and to the special match between the macrocyclic cavity size and the studied larger metal ions. To elucidate the adopted structures of complexes in solution, the nickel(II) and copper(II) complexes with both ligands were further studied by UV-vis-NIR spectroscopy in DMSO-H(2)O 1 : 1 (v/v) solution. The copper(II) complexes were also studied by EPR spectroscopy in the same mixture of solvents. The crystal structure of the copper complex of L(1) was also determined. The copper(II) displays an octahedral geometry, the four nitrogen atoms forming the equatorial plane and two oxygen atoms, one from the DBF unit and the other one from the ether oxygen, in axial positions. One of the ether oxygens of the macrocycle is out of the coordination sphere. Our results led us to suggest that this geometry is also adopted by the Co(2+) to Zn(2+) complexes, and only the larger Cd(2+) and Pb(2+) manage to form complexes with the involvement of all the oxygen atoms of the macrocyclic backbone.  相似文献   

4.
Substitution of the weakly binding aqua ligand in [Cu(tren)OH2](2+) and [Cu(tpa)OH2](2+) (tren = tris(2-aminoethyl)amine; tpa = tris(2-pyridylmethyl)amine) by a cyano ligand on ferricyanide results in the assembly of heteropolynuclear cations around the cyanometalate core. In water, the reduction of the Fe(III) core to Fe(II) generates complexes that feature heteropolycations in which ferrocyanide is encapsulated by the Cu(II) moieties: [(Cu(tpa)CN)6Fe][ClO4]8-3H2O 1, [(Cu(tren)CN)6Fe][ClO4]8-10H2O 2, [(Cu(tren)CN)6Fe][Fe(CN)6]2[ClO4]2-15.8H2O 3, and [(Cu(tren)CN)6Fe][(Cu(tren)CN)4Fe(CN)2][Fe(CN)6)]4-6DMSO-21H2O 4. The formation of discrete molecules, in preference to extended networks or polymeric structures, has been encouraged through the use of branched tetradentate ligands in conjunction with copper(II), a metal center with the propensity to form five-coordinate complexes. Complex 3 crystallizes in the monoclinic space group P2(1)/c (#14) with a = 14.8674(10), b = 25.9587(10), c = 27.5617(10) A, beta = 100.8300(10) degrees, and Z = 4, and it is comprised of almost spherical heptanuclear cations, [(Cu(tren)CN)6Fe](8+), whose charge is balanced by two ferricyanide and two perchlorate counteranions. Complex 4 crystallizes in the triclinic space group P1 (# 1) with a = 14.8094(8), b = 17.3901(7), c = 21.1565(11) A, alpha = 110.750(3), beta = 90.206(2), gamma = 112.754(3) degrees, and Z = 1, and it is comprised of the heptanuclear [(Cu(tren)CN)6Fe](8+) cation and pentanuclear [(Cu(tren)CN)4Fe(CN)2](4+) cation, whose terminal cyano ligands are oriented trans to each other. The charge is balanced exclusively by ferricyanide counteranions. In both complexes, H-bonding interactions between hydrogens on primary amines of the tren ligand, terminal cyano groups of the ferricyanide counterions, and the solvent of crystallization generate intricate 3D H-bonding networks.  相似文献   

5.
The syntheses of a new 1,4,7,10-tetraazacyclododecane (cyclen) derivative bearing a picolinate pendant arm (HL1), and its 1,4,8,11-tetraazacyclotetradecane (cyclam) analogue HL2, were achieved by using two different selective-protection methods involving the preparation of cyclen-bisaminal or phosphoryl cyclam derivatives. The acid-base properties of both compounds were investigated as well as their coordination chemistry, especially with Cu(2+), in aqueous solution and in solid state. The copper(II) complexes were synthesized, and the single crystal X-ray diffraction structures of compounds of formula [Cu(HL)](ClO(4))(2)·H(2)O (L = L1 or L2), [CuL1](ClO(4)) and [CuL2]Cl·2H(2)O, were determined. These studies revealed that protonation of the complexes occurs on the carboxylate group of the picolinate moiety. Stability constants of the complexes were determined at 25.0 °C and ionic strength 0.10 M in KNO(3) using potentiometric titrations. Both ligands form complexes with Cu(2+) that are thermodynamically very stable. Additionally, both HL1 and HL2 exhibit an important selectivity for Cu(2+) over Zn(2+). The kinetic inertness in acidic medium of both complexes of Cu(2+) was evaluated by spectrophotometry revealing that [CuL2](+) is much more inert than [CuL1](+). The determined half-life values also demonstrate the very high kinetic inertness of [CuL2](+) when compared to a list of copper(II) complexes of other macrocyclic ligands. The coordination geometry of the copper center in the complexes was established in aqueous solution from UV-visible and electron paramagnetic resonance (EPR) spectroscopy, showing that the solution structures of both complexes are in excellent agreement with those of crystallographic data. Cyclic voltammetry experiments point to a good stability of the complexes with respect to metal ion dissociation upon reduction of the metal ion to Cu(+) at about neutral pH. Our results revealed that the cyclam-based ligand HL2 is a very attractive receptor for copper(II), presenting a fast complexation process, a high kinetic inertness, and important thermodynamic and electrochemical stability.  相似文献   

6.
The copper(II)-assisted condensation of 2,3,2-tet (3,7-diazanonane-1,9-diamine) with formaldehyde and cyclopentanone yields the mono- and bis-macrocyclic Mannich condensation products L(1) and L(2), as well as the Schiff-base product L(3), all with cyclam-type tetraaza macrocycles, coordinated to copper(II). The combination of molecular mechanics and EPR spectroscopy (MM-EPR) reveals that all three isomers of [Cu(2)(L(2))(OH(2))(n)](2+) (n = 0-4), with the expected trans-III (R,R,S,S) configuration of the 14-membered tetraaza macrocycles, are of similar stability, and that the isomer whose structure is solved by X-ray crystallography has a different structure in solution.  相似文献   

7.
The stepwise complexation kinetics of Cu2+ with three tetratopic ligands L1, L2 and L3, tren-centred macrocycles with different bridges connecting the 14-membered macrocycles with the tren unit, have been measured by stopped-flow photodiode array techniques at 25 degrees C, I= 0.5 M (KNO3), and pH = 4.96. The reaction between the first Cu2+ and the ligand consists of several steps. In a rapid reaction Cu2+ first binds to the flexible and more reactive tren-unit. In this intermediate a translocation from the tren unit to the macrocyclic ring, which forms the thermodynamic more stable complex, takes place. This species can react further with a second Cu2+ to give a heterotopic dinuclear species with one Cu2+ bound by the tren-unit and the other coordinated by the macrocycle. A further translocation occurs to give the homoditopic species with two Cu2+ in the macrocycles. Finally a slow rearrangement of the dinuclear complex gives the final species. The rates of the translocation are dependent on the length and rigidity of the bridge, whereas the complexation rates with the tren unit are little affected by it. VIS spectra of the species obtained by fitting the kinetic results, EPR-spectra taken during the reaction, and ES mass spectra of the products confirm the proposed mechanism. The addition of a second, third and fourth equivalent of Cu2+ proceeds in an analogous way, but is complicated by the fact that we start and end with a mixture of species. These steps were evaluated in a qualitative way only.  相似文献   

8.
The synthesis and properties of 3 new ligand-bridged bimetallic complexes, 1(2+), 2(2+), and 3(2+), containing [RuCl([9]aneS(3))](+) metal centers are reported. Each complex was bridged by a different ditopic ligand. 1(2+) is bridged by 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine (bptz), while 2(2+) and 3(2+) are bridged by 2,3-bis(2-pyridyl)pyrazine (dpp) and 2,2'-bipyrimidine (bpym), respectively. The Ru([II]) isovalent states of these complexes have been investigated using a variety of techniques. In the case of 3(2+), X-ray crystallography studies show preferential crystallization of an anti form with respect to coordinated chloride ligands (crystal data for [3][Cl(2)].4H(2)O: C(20)H(38)Cl(4)N(4)O(4)Ru(2)S(6), monoclinic, space group P2(1)/a, a = 10.929(14), b = 13.514(17), c = 11.299(16) A, beta = 90.52(1), V = 1669 A(3), Z = 2). UV/vis spectroscopy shows that spectra of these complexes are dominated by intraligand (pi-->pi) and metal-to-ligand Ru(d)-->L(pi) charge transfer transitions. Electrochemical studies reveal that metal-metal interactions are sufficiently intense to generate the Ru(III)/Ru(II) mixed valence [[RuCl([9]aneS(3))(2)](L-L)](3+) state, where L-L = individual bridging ligands. Although the 1(3+), 2(3+), and 3(3+) mixed valence states were EPR silent at room temperature and 77 K, isotropic solution spectra were observed for the electrochemically generated radical cations 1(+), 2(+), and 3(+), with 1(+) displaying well-resolved hyperfine coupling to bridging ligand nitrogens. Using UV/vis/NIR spectroelectrochemistry, we investigated optical properties of the mixed valence complexes. All three showed intervalence charge transfer (IVCT) bands that are much more intense than electrochemical data indicate. Indeed, a comparison of IVCT data for 1(3+) with an analogous structure containing [(NH3)(3)Ru](2+) metal centers shows that the IVCT in the new complex is an order of magnitude more intense. It is concluded that although the new complexes show relatively weak electrostatic interactions, they possess large resonance energies.  相似文献   

9.
Choi KY  Kim DW  Kim CS  Hong CP  Ryu H  Lee YI 《Talanta》1997,44(4):527-534
The formation and dissociation rates of some transition metal(II) and lanthanide(III) complexes of the 1,7,13-triaza-4,10,16-trioxacyclooctadecane N',N',N'-triacetic acid (1) and 1,7,13-triaza-4,10,16-trioxacyclooctadecane-N',N',N'- trimethylacetic acid (2) have been measured by the use of stopped-flow and conventional spectrophotometry. Experimental observations were made at 25.0 +/- 0.1 degrees C and at an ionic strength of 0.10 M KCl. The complexation of Zn(2+) and Cu(2+) ions with 1 and 2 proceeds through the formation of an intermediate complex (MH(3)L(+) *) in which the metal ion is incompletely coordinated. This may then lead to a final product in the rate-determining step. Between pH 4.68 and 5.55, the diprotonated (H(2)L(-)) form is revealed to be a kinetically active species despite its low concentration. The stability constants (log K (MH (3)L (+) *)) and specific base-catalyzed rate constants (k(OH)) of intermediate complexes have been determined from the kinetic data. The dissociation reactions of 1 and 2 complexes of Co(2+), Ni(2+), Zn(2+), Ce(3+), Eu(3+) and Yb(3+) were investigated with Cu(2+) ions as a scavenger in acetate buffer. All complexes exhibit acid-independent and acid-catalyzed contributions. The buffer and Cu(2+) concentration dependence on the dissociation rate has also been investigated. The metal and ligand effects on the dissociation rate of some transition metal(II) and lanthanide(III) complexes are discussed in terms of the ionic radius of the metal ions, the side-pendant arms and the rigidity of the ligands.  相似文献   

10.
A series of nickel(II) complexes with polydentate aminopyridine ligands N,N,N'-tris-[2-(2'-pyridyl)ethyl]ethane-1,2-diamine (L1), N,N,N'-tris-[2-(2'-pyridyl)ethyl]-N'-methylethane-1,2-diamine (L2), and N,N'-bis-[2-(2'-pyridyl)ethyl]-N,N'-dimethylethane-1,2-diamine (L3) were synthesized and characterized by elemental analysis and spectroscopic methods. Single-crystal X-ray diffraction studies showed that the Ni(II) ions have five-coordinate square-pyramidal geometry in [NiL2](ClO(4))(2), similar to that previously found in [NiL1](ClO(4))(2) x CH(3)NO(2) (Hoskins, B. F.; Whillans, F. D.J. Chem. Soc., Dalton Trans. 1975, 657), and square-planar geometry in [NiL3](ClO(4))(2). All three nickel(II) complexes are reduced by sodium borohydride or sodium amalgam in organic solvents to nickel(I) species, which were identified by highly anisotropic EPR spectra at 100 K: g(1) = 2.239, g(2) = 2.199, and g(3) = 2.025 for [NiL1](+); g(axially) = 2.324 and g(radially) = 2.079 for [NiL2](+) and [NiL3](+). Cyclic voltammetry of the nickel(II) complexes in acetonitrile exhibited reversible reduction waves at -1.01 V for [NiL1](2+), -0.91 V for [NiL2](2+), and -0.83 V for [NiL3](2+) versus SCE, potentials which are significantly less negative than those of most previously characterized Ni(II) complexes with nitrogen-only donor atoms. Complexes [NiL1](2+) and [NiL2](2+) showed high catalytic activity in the electroreduction of 1,2-trans-dibromocyclohexane to cyclohexene.  相似文献   

11.
本文合成了1, 4, 7-三氮杂环十烷-8, 10-二酮(td)和9-(2'-羟基苄基)-1, 4, 7-三氮杂环十烷-8, 10-二酮(btd)两个新型二氧三胺大环配体, 经元素分析, IR, 1H NMR以及MS等方法表征。采用分子力学方法探讨了取代基对配体合成的影响。利用pH法, 在25.0±0.1℃,I=0.1mol/L KNO3条件下, 测定了配体btd的质子化常数及其与Cu(II)配位的平衡常数。结合光谱滴定及配合物EPR结果, 讨论了二氧三胺大环配体与Cu(II)离子的配位方式。  相似文献   

12.
A new iminocoumarin based receptor L (C(27)H(26)N(4)OS) is synthesized with pyridyl and benzothiazolyl functionality. Synthesis of L is easy and it is isolated in good yield. L shows a selective and distinct color change from yellow to orange with Cu(2+) over Li(+), Na(+), Ca(2+), Mg(2+), Cr(2+), Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Pb(2+), and Ag(+) whereas a slight change in color is also observed in the case of Hg(2+) but L shows selective fluorescent quenching only in the presence of Cu(2+) in aqueous HEPES buffer (pH 7.0). The naked eye detection limit of Cu(2+) is determined at 2 μM whereas an emission experiment shows a lower detection limit at 200 nM. Selectivity studies of L in presence of 50 equivalents of other ion(s) by emission experiment show no interference toward the detection of 1 equivalent of Cu(2+). Both UV-Vis and fluorescence studies in the presence of Cu(2+)-salts of different counter anions with various sizes and shapes (Cl(-), ClO(4)(-), NO(3)(-), CF(3)SO(3)(-), SO(4)(2-) and BF(4)(-)) show almost similar spectral output in buffer media irrespective of the nature of the counter anions. The detailed UV-Vis and fluorescence titration experiments suggest the existence of both 1:1 and 2:1 (L:Cu(2+)) complexation stoichiometry and EPR study shows d(x(2)-y(2)) ground state of the Cu(II) centre in the complex. Furthermore the formation of a mononuclear [Cu(L)(CH(3)CN)].2ClO(4) complex and the flexible conformation of L in the solid state are confirmed by the single-crystal X-ray structural study.  相似文献   

13.
New 5-chloro-8-hydroxyquinoline (CHQ)-substituted aza-18-crown-6 (4), diaza-18-crown-6 (1), diaza-21-crown-7 (2), and diaza-24-crown-8 (3) ligands, where CHQ was attached through the 7-position, and aza-18-crown-6 (11) and diaza-18-crown-6 (10) macrocycles, where CHQ was attached through the 2-position, were prepared. Thermodynamic quantities for complexation of these CHQ-substituted macrocycles with alkali, alkaline earth, and transition metal ions were determined in absolute methanol at 25.0 degrees C by calorimetric titration. Two isomers, 1 and 10, which are different only in the attachment positions of the CHQ to the parent macroring, exhibit remarkable differences in their affinities toward the metal ions. Compound 1 forms very stable complexes with Mg(2+), Ca(2+), Cu(2+), and Ni(2+) (log K = 6.82, 5.31, 10.1, and 11.4, respectively), but not with the alkali metal ions. Ligand 10 displays strong complexation with K(+) and Ba(2+) (log K = 6.61 and 12.2, respectively) but not with Mg(2+) or Cu(2+). The new macrocycles and their complexes have been characterized by means of UV-visible and (1)H NMR spectra and X-ray crystallography. New peaks in the UV spectrum of the Mg(2+)-1 complex could allow an analytical determination of Mg(2+) in very dilute solutions in the presence of other alkali and alkaline earth metal cations. (1)H NMR spectral and X-ray crystallographic studies indicate that ligand 10 forms a cryptate-like structure when coordinated with K(+) and Ba(2+), which induces an efficient overlap of the two hydroxyquinoline rings. Such overlapping forms a pseudo second macroring that results in a significant increase in both complex stability and cation selectivity.  相似文献   

14.
A series of new coordination complexes of cobalt(II), nickel(II) and copper(II) with two new aroylhydrazones, 2-hydroxy-1-naphthaldehyde isonicotinoylhydrazone (H(2)L(1)) and 2-hydroxy-1-naphthaldehyde-2-thenoyl-hydrazone (H(2)L(2)) have been synthesized and characterized by elemental analysis, conductance measurements, magnetic susceptibility measurements, (1)H NMR spectroscopy, IR spectroscopy, electronic spectroscopy, EPR spectroscopy and thermal analysis. IR spectra suggests ligands acts as a tridentate dibasic donor coordinating through the deprotonated naphtholic oxygen atom, azomethine nitrogen atom and enolic oxygen atom. EPR and ligand field spectra suggests octahedral geometry for Co(II) and Ni(II) complexes and a square planar geometry for Cu(II) complexes.  相似文献   

15.
The compound bis[1,1'-N,N'-(2-picolyl)aminomethyl]ferrocene, L(1), was synthesized. The protonation constants of this ligand and the stability constants of its complexes with Ni(2+), Cu(2+), Zn(2+), Cd(2+) and Pb(2+) were determined in aqueous solution by potentiometric methods at 25 degrees C and at ionic strength 0.10 mol dm(-3) in KNO(3). The compound L(1) forms only 1:1 (M:L) complexes with Pb(2+) and Cd(2+) while with Ni(2+) and Cu(2+) species of 2 [ratio] 1 ratio were also found. The complexing behaviour of L(1) is regulated by the constraint imposed by the ferrocene in its backbone, leading to lower values of stability constants for complexes of the divalent first row transition metals when compared with related ligands. However, the differences in stability are smaller for the larger metal ions. The structure of the copper complex with L(1) was determined by single-crystal X-ray diffraction and shows that a species of 2:2 ratio is formed. The two copper centres display distorted octahedral geometries and are linked through the two L(1) bridges at a long distance of 8.781(10) Angstrom. The electrochemical behaviour of L(1) was studied in the presence of Ni(2+), Cu(2+), Zn(2+), Cd(2+) and Pb(2+), showing that upon complexation the ferrocene-ferrocenium half-wave potential shifts anodically in relation to that of the free ligand. The maximum electrochemical shift ([capital Delta]E(1/2)) of 268 mV was found in the presence of Pb(2+), followed by Cu(2+)(218 mV), Ni(2+)(152 mV), Zn(2+)(111 mV) and Cd(2+)(110 mV). Moreover, L(1) is able to electrochemically and selectively sense Cu(2+) in the presence of a large excess of the other transition metal cations studied.  相似文献   

16.
The properties of Cu(II) and Co(II) complexes with oxygen- or nitrogen-containing macrocycles have been extensively studied; however, less attention has been paid to the study of complexes containing sulfur atoms in the first coordination sphere. Herein we present the interaction between these two metal ions and two macrocyclic ligands with N2S2 donor sets. Cu(II) and Co(II) complexes with the pyridine-containing 14-membered macrocycles 3,11-dithia-7,17-diazabicyclo[11.3.1]heptadeca-1(17),13,15-triene (L) and 7-(9-anthracenylmethyl)-3,11-dithia-7,17-diazabicyclo[11.3.1]heptadeca-1(17),13,15-triene (L1) have been synthesized. The X-ray structural analysis of {[Co(ClO4)(H2O)(L)][Co(H2O)2(L)]}(ClO4)3 shows two different metal sites in octahedral coordination. The EPR spectra of powdered samples of this compound are typical of distorted six-coordinated Co(II) ions in a high-spin (S=3/2) configuration, with the ground state being S=1/2 (g1=5.20, g2=3.20, g3=1.95). The EPR spectrum of [Cu(ClO4)(L)](ClO4) was simulated assuming an axial g tensor (g1=g2=2.043, g3=2.145), while that of [Cu(ClO4)(L1)](ClO4) slightly differs from an axial symmetry (g1=2.025, g2=2.060, g3=2.155). These results are compatible with a Cu(II) ion in square-pyramidal coordination with N2S2 as basal ligands. Single-crystal EPR experiment performed on [Cu(ClO4)(L1)](ClO4) allowed determining the eigenvalues of the molecular g tensor associated with the copper site, as well as the two possible orientations for the tensor. On the basis of symmetry arguments, an assignment in which the eigenvectors are nearly along the Cu(II)-ligand bonds is chosen.  相似文献   

17.
Interaction of the lacunary [alpha-XW9O33](9-) (X = As(III), Sb(III)) with Cu(2+) and Zn(2+) ions in neutral, aqueous medium leads to the formation of dimeric polyoxoanions, [(alpha-XW9O33)2M3(H2O)3](12-) (M = Cu(2+), Zn(2+); X = As(III), Sb(III)), in high yield. The selenium and tellurium analogues of the copper-containing heteropolyanions are also reported: [(alpha-XW9O33)2Cu3(H2O)3](10-) (X = Se(IV), Te(IV)). The polyanions consist of two [alpha-XW9O33] units joined by three equivalent Cu(2+) (X = As, Sb, Se, Te) or Zn(2+) (X = As, Sb) ions. All copper and zinc ions have one terminal water molecule resulting in square-pyramidal coordination geometry. Therefore, the title anions have idealized D3h symmetry. The space between the three transition metal ions is occupied by three sodium ions (M = Cu(2+), Zn(2+); X = As(III), Sb(III)) or potassium ions (M = Cu(2+); X = Se(IV), Te(IV)) leading to a central belt of six metal atoms alternating in position. Reaction of [alpha-AsW9O33](9-) with Zn(2+), Co(2+), and Mn(2+) ions in acidic medium (pH = 4-5) results in the same structural type but with a lower degree of transition-metal substitution, [(alpha-AsW9O33)2WO(H2O)M2(H2O)2](10-) (M = Zn(2+), Co(2+), Mn(2+)). All nine compounds are characterized by single-crystal X-ray diffraction, IR spectroscopy, and elemental analysis. The solution properties of [(alpha-XW9O33)2Zn3(H2O)3](12-) (X = As(III), Sb(III)) were also studied by 183W-NMR spectroscopy.  相似文献   

18.
Hu YZ  Xiang Q  Thummel RP 《Inorganic chemistry》2002,41(13):3423-3428
A series of four biphen (phen = 1,10-phenanthroline) ligands, 2,2'-biphen (1), 3,3'-biphen (2), 2,2'-dimethylene-3,3'-biphen (3), and 2,3'-dimethylene-3,2'-biphen (4), is prepared by coupling and Friedl?nder methodology. The corresponding mononuclear Ru(II) complexes, [Ru(1-4)(Mebpy)(2)](2+) where Mebpy = 4,4'-dimethyl-2,2'-bipyridine, are prepared. These complexes show long wavelength electronic absorptions at 441-452 nm and emissions at 622-641 nm. Metal-based oxidations occur in the range 1.18-1.21 V, and ligand-based reductions, at -1.20 to -1.30 V. The addition of Zn(2+), Cd(2+), or Hg(2+) ions results in a strong enhancement and red shift of the luminescence of complex Ru-3. Alkali and alkaline earth metal ions barely affect the luminescence of Ru-3 while transition metal ions such as Co(2+), Cu(2+), Ni(2+), and Mn(2+) lead to efficient quenching of the Ru-3 luminescence. The luminescence of Ru-2 and Ru-4 is quenched in the presence of Zn(2+) because of a conformationally induced reduction in electronic communication between the two phen halves of the ligand. The addition of Zn(2+) has only a slight effect on the luminescence of Ru-1 because of steric hindrance toward complexation.  相似文献   

19.
Increased preorganization can be achieved by immobilizing ligands on solid supports. Photoluminescent porous silicon, which can undergo facile hydrosilylation, was used as a support for open chain neutral N- and O-donor ligands. The abilities of these ligands to bind the divalent metal ions Ni(2+), Cu(2+), Zn(2+), and Pb(2+) are examined. Immobilized ligands selectively complexed Cu(II) over the other metal ions studied. Ligands immobilized on photoluminescent porous silicon also removed a significant amount, up to 98%, of Cu(II) from copper(II)-spiked, organic-rich, seawater samples.  相似文献   

20.
A series of pyrazole and triazole based dinucleating ligands have been synthesized and their complexation potential for metal ions, which exhibit square planar coordination geometry has been studied. In the case of Cu(2+) the complexation equilibria in solution have been determined using pH titrations. Species with 1 : 1 stoichiometry [CuLH(n)], 2 : 1 stoichiometry [Cu(2)LH(m)], and of dimeric nature [Cu(2)L(2)H(p)], have been detected and their overall stability constants have been measured. The reactivity of the dinuclear species [Cu(2)LH(-1)] towards phosphate ester hydrolysis have shown that the OH-functionality incorporated in some of the ligands does not enhance the hydrolysis rate. Several ligands were reacted with Pt(2+) to give insoluble dinuclear species [Pt(2)LI(3)]. One of them was studied by X-ray diffraction and shows that the two Pt(2+) are bridged by the pyrazolide group and by one I(-). The remaining two positions are occupied by the amino group in alpha position of the heterocyclic ring and a terminal I(-). The nearly planar [Pt(2)LI(3)] units form sheets in the crystals, which are about 4 A apart and thus indicate pi stacking interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号