首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We are using the coordinating anions tetrakis(imidazolyl)borate and tetrakis(4-methylimidazolyl)borate to construct new metal-organic framework structures. In this report, we are exploring materials similar in composition to the previously reported layered network structure Pb[B(Im)(4)](NO(3))(nH(2)O). The metal in this compound can be replaced with isoelectronic Tl(I), affording Tl[B(Im)(4)], and the borate can be modified by using 4-methylimidazole, resulting in Pb[B(4-MeIm)(4)](NO(3)) and Tl[B(4-MeIm)(4)]. Like the parent Pb[B(Im)(4)](NO(3))(nH(2)O), Tl[B(Im)(4)] and Tl[B(4-MeIm)(4)] are layered network structures but both lack anions or solvent molecules in the interlayer spacing. The material Pb[B(4-MeIm)(4)](NO(3)), however, exhibits a 3D network structure that lacks an open topology, resulting from the increased stereochemical activity (greater steric bulk toward other ligands) of the 4-methylimidazole ring. Both of the Tl(I) solids display longer M-N bonds than observed in the analogous Pb(II) compounds; these lengths account for the decreased effect of the stereochemical activity of the 4-methylimidazole ring in Tl[B(4-MeIm)(4)].  相似文献   

2.
The coordination polymer Pb[B(Im)(4)](NO(3))(xH(2)O), constructed by using sodium tetrakis(imidazolyl)borate and lead(II) nitrate solutions, is a layered material with the metal centers facing the interlayer spacing. As in naturally occurring layered minerals, this compound can readily undergo anion exchange and reversible intercalation of solvent water in the solid state with retention of crystallinity. We observed changes in solvent intercalation by (207)Pb solid state NMR (SSNMR) and thermogravimetric analysis (TGA). Stoichiometric exchange of (15)N nitrate for nitrate and iodide for nitrate is monitored by (15)N and (207)Pb SSNMR, and single crystals of the iodide-exchanged material Pb[B(Im)(4)]I were isolated. While the iodide compound can be obtained through facile exchange from the nitrate parent compound, the organic anion benzoate is placed in the interlayer spacing for nitrate under self-assembly conditions and forms an alternating monolayer in Pb[B(Im)(4)](C(6)H(5)COO)(0.5H(2)O). The ion exchange versus self-assembly behavior correlates with the structural differences in the three compounds. In both Pb[B(Im)(4)]I and Pb[B(Im)(4)](C(6)H(5)COO)(0.5H(2)O), the lead sites act as Lewis acids for the iodide and benzoate, respectively.  相似文献   

3.
The coordination polymer Pb[B(Im)(4)](NO(3)), constructed by using tetrakis(imidazolyl)borate and lead(II) nitrate solutions, is a layered material with the metal centers facing the interlayer spacing. As in naturally occurring layered minerals, this compound can readily undergo anion exchange in the solid state with retention of crystallinity. We examined stoichiometric exchange of (15)N-nitrate for nitrate and iodide for nitrate by (15)N and (207)Pb SSNMR and confirmed retention of crystallinity by IR and powder XRD diffraction.  相似文献   

4.
Crystals of the layered metal organic framework solid Pb[B(Im)4](NO3)(nH2O) can undergo exchange of the nitrate for perrhenate, a model for pertechnetate, forming Pb[B(Im)4](ReO4). We can monitor this reaction by 207Pb solid-state NMR and can isolate single crystals of the resultant material through growth in the presence of an excess of perrhenate. Such a synthetic metal-organic framework solid represents a new candidate for pertechnetate-sequestering materials.  相似文献   

5.
Three unusual polyoxovanadate-based inorganic-organic hybrid complexes, [Zn(Im)(2)(DMF)(2)](2)[H(2)V(10)O(28)]·Im·DMF (1), [Zn(3)(Htrz)(6)(H(2)O)(6)][V(10)O(28)]·10H(2)O·Htrz (2) and {[Zn(3)(trz)(3)(H(2)O)(4)(DMF)](2)[V(10)O(28)]·4H(2)O}(n) (3) (Im = imidazole, Htrz = 1,2,4-triazole, DMF = N,N'-dimethylammonium) have been synthesized at room temperature via evaporative crystallization, and characterized by single-crystal X-ray diffraction. Complex 1 shows the structure of a discrete [V(10)O(28)](6-) cluster grafted by two [Zn(Im)(2)(DMF)(2)](2+) fragments through two bridged oxygen atoms, representing a rarely observed coordination mode. Complex 2 consists of a linear trinuclear Zn(II) unit bridging six Htrz ligands and a [V(10)O(28)](6-) cluster as the counter anion, where the extensive hydrogen-bonding interactions lead to {Zn(3)-V(10)}(SMF) and a special water layer involving (H(2)O)(36) rings, and consequently forms a unique 3D metal-organic-water supramolecular network. Complex 3 can be described as a 3,4-connected fsc-type network, and is the first example of open coordination 3D framework based on [V(10)O(28)](6-) and the other two different secondary building units, involving mononuclear and binuclear Zn(II)-Htrz motifs. The optical properties of complexes 1-3 in the solid state are investigated at room temperature. The results show that complexes 1 and 3 emit intense blue luminescences attributed to the ligands, while complex 2 exhibits an infrequent fluorescent property, emitting both blue and yellow luminescences at 472 and 603 nm simultaneously. Furthermore, powder X-ray diffraction and thermogravimetric analyses of 1-3 are also investigated, which demonstrate their high purities and thermal stabilities.  相似文献   

6.
Experiments have been performed in the gas phase to investigate the stability of complexes of the general form [Pb(ROH)(N)](2+). With water as a solvent, there is no evidence of [Pb(H(2)O)(N)](2+); instead [PbOH(H(2)O)(N-1)](+) is observed, where lead is considered to be held formally in a +2 oxidation state by the formation of a hydroxide core. As the polarizability of the solvating ligands is increased through the use of straight chain alcohols, ROH, solvation of Pb(2+) is observed without proton transfer when R >or= CH(3)CH(2)CH(2)-. The relative stabilities of [Pb(ROH)(4)](2+) complexes with respect to proton transfer are further investigated through the application of density functional theory to examples where R = H, methyl, ethyl, and 1-propyl. Of three trial structures examined for [Pb(ROH)(4)](2+) complexes, in all cases those with the lowest energy comprised of three solvent molecules were directly bound to the central cation, with the fourth molecule held in a secondary shell by hydrogen bonds. The implications of this arrangement as a favorable starting structure for proton transfer are discussed. Conditions for the stability of particular Pb(II)/ligand combinations are also discussed in terms of the hard-soft acid-base principle. Charge population densities calculated for the central lead cation and oxygen donor atoms across the ROH range are used to support the proposal that proton transfer occurs when a ligand is hard. Stability of the [Pb(ROH)(4)](2+) unit is commensurate with a decrease in the ionic character of the bond between Pb(2+) and a ligand; this in turn reflects a softening of the ligand as the alkyl chain increases in length. From the calculations, the most favorable protonated product is, in all cases, (ROH)(2)H(+). The trends observed with lead are compared with Cu(II), which is capable of forming stable gas-phase complexes with water and all of the alcohols considered here.  相似文献   

7.
The triple-decker cations trans-[(Cp*Sn)(2)(mu-eta(5):eta(5)-Cp*)](+) and trans-[(Cp*Pb)(2)(mu-eta(5):eta(5)-Cp*)](+) have been prepared and structurally characterized as their [B(C(6)F(5))(4)](-) salts from the reactions of [Cp*M][B(C(6)F(5))(4)](M = Sn, Pb) with the appropriate decamethylmetallocene. Both triple-decker cations adopt a cisoid arrangement of terminal Cp* groups, whereas the two known triple-decker main-group anions possess a transoid arrangement of terminal Cp groups. The reason for this conformational difference has been probed on the basis of DFT calculations.  相似文献   

8.
Six novel inorganic-organic coordination supramolecular networks based on a versatile linking unit 4-pyridylthioacetate (pyta) and inorganic Co(II), Cu(II), Ag(I), Zn(II), Mn(II) and Pb(II) salts have been prepared in water medium and structurally characterized by single-crystal X-ray diffraction analysis. Reaction of CoCl(2).6H(2)O with Hpyta afforded a neutral mononuclear complex [Co(pyta)(2)(H(2)O)(4)](1), which exhibits a two-dimensional (2-D) layered architecture through intermolecular O-HO interactions. Reaction of CuCl(2.2H(2)O with Hpyta yielded a neutral one-dimensional (1-D) coordination polymer [[Cu(pyta)(2)(H(2)O].0.5H(2)O](n)(2) consisting of rectangle molecular square units, which show a three-dimensional (3-D) supramolecular network through S...S and O-H...O weak interactions. However, when AgNO(3), Zn(OAc)(2).2H(2)O or MnCl(2).4H(2)O salts were used in the above self-assembled processes, the neutral 2-D coordination polymers [Ag(pyta)](n)(3), [[Zn(pyta)(2)].4H(2)O](n)(4) or [[Mn(pyta)(2)(H(2)O)]](n)(5) with different topologies were obtained, respectively. While substituting the transition metal ions used in 1-5 with Pb(OAc)(2).3H(2)O, a one-dimensional coordination polymer [Pb(pyta)(2)](n)(6), which shows a novel 2-fold interpenetrating 2-D supramolecular architecture through weak SS interactions, was isolated. It is interesting to note that the building block pyta anion exhibits different configurations and coordination modes in the solid structures of complexes 1-6. These results indicate that the versatile nature of this flexible ligand, together with the coordination preferences of the metal centers, play a critical role in construction of these novel coordination polymers or supramolecules. The spectral and thermal properties of these new materials have also been investigated.  相似文献   

9.
The ruthenium bis(bipyridine) complexes cis-[Ru(bpy)(2)Im(OH(2))](2+), cis-[Ru(bpy)(2)(Im)(2)](2+), cis-[Ru(bpy)(2)(N-Im)(2)](2+), cis-[Ru(dmbpy)(2)Im(OH(2))](2+), cis-[Ru(dmbpy)(2)(N-Im)(OH(2))](2+)(bpy = 2,2'-bipyridine, dmbpy = 4,4'-dimethyl-2,2'-bipyridine, Im = imidazole, N-Im = N-methylimidazole), have been synthesized under ambient conditions in aqueous solution (pH 7). Their electrochemical and spectroscopic properties, absorption, emission, and lifetimes were determined and compared. The substitution kinetics of the cis-[Ru(bpy)(2)Im(OH(2))](2+) complexes show slower rates and have lower affinities for imidazole ligands than the corresponding cis-[Ru(NH(3))(4)Im(OH(2))](2+) complexes. The crystal structures of the monoclinic cis-[Ru(bpy)(2)(Im)(2)](BF(4))(2), space group = P2(1)/a, Z = 4, a = 11.344(1) ?, b = 17.499(3) ?, c = 15.114(3) ?, and beta = 100.17(1) degrees, and triclinic cis-[Ru(bpy)(2)(N-Im)(H(2)O)](CF(3)COO)(2).H(2)O, space group = P&onemacr;, Z = 2, a = 10.432(4) ?, b = 11.995(3) ?, c = 13.912(5) ?, alpha = 87.03(3) degrees, beta = 70.28(3) degrees, and gamma = 71.57(2) degrees, complexes show that these molecules crystallize as complexes of octahedral Ru(II) to two bidentate bipyridine ligands with two imidazole ligands or a water and an N-methylimidazole ligand cis to each other. The importance of these molecules is associated with their frequent use in the modification of proteins at histidine residues and in comparisons of the modified protein derivatives with these small molecule analogs.  相似文献   

10.
A reversible crystal-to-crystal transformation of a 3D lead(ii) coordination polymer with the ligand 4-pyridinecarboxylic acid (4-Hpyc), from [Pb(4-pyc)(2)(H(2)O)](n) () to [Pb(4-pyc)(2)](n) () by de- and re-hydration, has been observed and the structures of and were determined by single-crystal X-ray diffraction. The thermal stabilities of compounds and were studied by thermal, gravimetric and differential thermal analyses. Powder X-ray diffraction experiments showed that the phase transitions observed for the single crystals also occur in the batch powder samples and lead to mono phasic products.  相似文献   

11.
(204m)Pb perturbed angular correlation of γ-rays (PAC) spectroscopy has been applied successfully for the first time to detect the nuclear quadrupole interaction in a lead(II) coordination compound in a molecular crystal [tetraphenylarsonium lead(II) isomaleonitriledithiolate ([AsPh(4)](4)[Pb(2)(i-mnt)(4)])]. The recorded parameters from a powder crystalline sample are ν(Q) = 0.178(1) GHz and η = 0.970(7). The electric field gradient (EFG) was determined at the PW91/QZ4P level including relativistic effects using the two-component zeroth-order regular approximation method for both the [Pb(i-mnt)(2)](2-) monomer and the [Pb(2)(i-mnt)(4)](4-) dimer. Only the EFG for the latter compares favorably with the experimental data, indicating that the picture of this complex as a prototypical hemidirected coordination geometry with a stereochemically active lone pair on lead(II) is inadequate. Advantages and limitations of (204m)Pb PAC spectroscopy as a novel technique to elucidate the electronic and molecular structures of lead-containing complexes and biomolecules are presented.  相似文献   

12.
We are using the coordinating anion tetrakis(imidazolyl)borate to construct new metal-organic framework structures. In this report, we present three alkaline earth metal network solids incorporating this anion. All three compounds have the same formula, M[B(Im)(4)](2)(H(2)O)(2) (M = Mg, Ca, Sr), and the same coordination environment about the metal. However, the three compounds have different network structures with different degrees of hydrogen bonding; the Mg material forms a two-dimensional network and the Ca and Sr compounds form one-dimensional chains. In addition, we present the structure of the protonated anion B(HIm)(Im)(3) as a model for the default structure of this anion and discuss how the conformation of tetrakis(imidazolyl)borate can affect the structure of network solids.  相似文献   

13.
When the ligand 1,4,5-triazanaphthalene (abbreviated as tan) is reacted with Cu(II) BF(4)(-) and ClO(4)(-) salts, a variety of mononuclear compounds has been found, all with the [Cu(tan)(4)] unit and varying amounts of weakly coordinating axial ligands and lattice solvents. Reproducible compounds formed include two purple compounds, analyzing as [Cu(tan)(4)](ClO(4))(2)(CH(3)OH)(2)(H(2)O) (1) and [Cu(tan)(4)](BF(4))(2)(CH(3)OH)(1.5)(H(2)O) (3), and two blue compounds, analyzing as [Cu(tan)(4)](ClO(4))(2)(H(2)O)(2) (2) and [Cu(tan)(4)](2)(BF(4))(2)(H(2)O)(2) (4). Upon standing at room temperature, red-coloured, mixed-valence dinuclear-based 3D coordination polymers are formed by conversion of the purple/blue products, of which [Cu(2)(tan)(4)](n)(BF(4))(3n) (5) and the isomorphic methanol-water adduct [Cu(tan)(4)](n)(BF(4))(3n)(CH(3)OH)(n)(H(2)O)(5n) (5A) are presented in this paper. In addition a fully reduced dinuclear Cu(I) compound of formula [Cu(2)(tan)(3)(ClO(4))(2)] (7) has been observed, and structurally characterized, as a rare three-blade propeller structure, with a Cu-Cu distance of 2.504 ?.  相似文献   

14.
The reaction of [Mo(3)S(4)(H(2)O)(9)](4+) with Bi(III) in the presence of BH(4)(-) (rapid), or with Bi metal shot (3-4 days), gives a heterometallic cluster product. The latter has been characterized as the corner-shared double cube [Mo(6)BiS(8)(H(2)O)(18)](8+) by the following procedures. Analyses by ICP-AES confirm the Mo:Bi:S ratio as 6:1:8. Elution from a cation-exchange column by 4 M Hpts (Hpts = p-toluenesulfonic acid), but not 2 M Hpts (or 4 M HClO(4)), is consistent with a high charge. The latter is confirmed as 8+ from the 3:1 stoichiometries observed for the oxidations with [Co(dipic)(2)](-) or [Fe(H(2)O)(6)](3+) yielding [Mo(3)S(4)(H(2)O)(9)](4+) and Bi(III) as products. Heterometallic clusters [Mo(6)MS(8)(H(2)O)(18)](8+) are now known for M = Hg, In, Tl, Sn, Pb, Sb, and Bi and are a feature of the P-block main group metals. The color of [Mo(6)BiS(8)(H(2)O)(18)](8+) in 2.0 M Hpts (turquoise) is different from that in 2.0 M HCl (green-blue). Kinetic studies (25 degrees C) for uptake of a single chloride k(f) = 0.80 M(-)(1) s(-)(1), I = 2.0 M (Hpts), and the high affinity for Cl(-) (K > 40 M(-)(1)) exceeds that observed for complexing at Mo. A specific heterometal interaction of the Cl(-) not observed in the case of other double cubes is indicated. The Cl(-) can be removed by cation-exchange chromatography with retention of the double-cube structure. Kinetic studies with [Co(dipic)(2)](-) and hexaaqua-Fe(III) as oxidants form part of a survey of redox properties of this and other clusters. The Cl(-) adduct is more readily oxidized by [Co(dipic)(2)](-) (factor of approximately 10) and is also more air sensitive.  相似文献   

15.
Despite reports to the contrary, doubly charged lead monohydrate is a stable species against both proton and charge transfers. [Pb(H(2)O)](2+) has been observed as a minor product in the ligand-exchange reaction of [Pb(CH(3)CN)](2+) with H(2)O after collisional activation. Density functional theory has been used to examine reaction profiles of [Pb(H(2)O)(n)](2+) where n = 1, 2, and 3.  相似文献   

16.
We have prepared and characterized a new phenol-based compartmental ligand (H(2)L) incorporating 1,4,7-triazacyclononane ([9]aneN(3)), and we have investigated its coordination behavior with Cu(II), Zn(II), Cd(II), and Pb(II). The protonation constants of the ligand and the thermodynamic stabilities of the 1:1 and 2:1 (metal/ligand) complexes with these metal ions have been investigated by means of potentiometric measurements in aqueous solutions. The mononuclear [M(L)] complexes show remarkably high stability suggesting that, along with the large number of nitrogen donors available for metal binding, deprotonated phenolic functions are also involved in binding the metal ion. The mononuclear complexes [M(L)] show a marked tendency to add a second metal ion to afford binuclear species. The formation of complexes [M(2)(H(2)L)](4+) occurs at neutral or slightly acidic pH and is generally followed by metal-assisted deprotonation of the phenolic groups to give [M(2)(HL)](3+) and [M(2)(L)](2+) in weakly basic solutions. The complexation properties of H(2)L have also been investigated in the solid state. Crystals suitable for X-ray structural analysis were obtained for the binuclear complexes [Cu(2)(L)](BF(4))(2).(1)/(2)MeCN (1), [Zn(2)(HL)](ClO(4))(3).(1)/(2)MeCN (2), and [Pb(2)(L)](ClO(4))(2).2MeCN (4). In 1 and 2, the phenolate O-donors do not bridge the two metal centers, which are, therefore, segregated each within an N(5)O-donor compartment. However, in the case of the binuclear complex [Pb(2)(L)](ClO(4))(2).2MeCN (4), the two Pb(II) centers are bridged by the phenolate oxygen atoms with each metal ion sited within an N(5)O(2)-donor compartment of L(2)(-), with a Pb.Pb distance of 3.9427(5) A.  相似文献   

17.
From the system MF(2)/PF(5)/XeF(2)/anhydrous hydrogen fluoride (aHF), four compounds [Sr(XeF(2))(3)](PF(6))(2), [Pb(XeF(2))(3)](PF(6))(2), [Sr(3)(XeF(2))(10)](PF(6))(6), and [Pb(3)(XeF(2))(11)](PF(6))(6) were isolated and characterized by Raman spectroscopy and X-ray single-crystal diffraction. The [M(XeF(2))(3)](PF(6))(2) (M = Sr, Pb) compounds are isostructural with the previously reported [Sr(XeF(2))(3)](AsF(6))(2). The structure of [Sr(3)(XeF(2))(10)](PF(6))(6) (space group C2/c; a = 11.778(6) Angstrom, b = 12.497(6) Angstrom, c = 34.60(2) Angstrom, beta = 95.574(4) degrees, V = 5069(4) Angstrom(3), Z = 4) contains two crystallographically independent metal centers with a coordination number of 10 and rather unusual coordination spheres in the shape of tetracapped trigonal prisms. The bridging XeF(2) molecules and one bridging PF(6)- anion, which connect the metal centers, form complicated 3D structures. The structure of [Pb(3)(XeF(2))(11)](PF(6))(6) (space group C2/m; a = 13.01(3) Angstrom, b = 11.437(4) Angstrom, c = 18.487(7) Angstrom, beta = 104.374(9) degrees, V = 2665(6) Angstrom(3), Z = 2) consists of a 3D network of the general formula {[Pb(3)(XeF(2))(10)](PF(6))(6)}n and a noncoordinated XeF(2) molecule fixed in the crystal structure only by weak electrostatic interactions. This structure also contains two crystallographically independent Pb atoms. One of them possesses a unique homoleptic environment built up by eight F atoms from eight XeF(2) molecules in the shape of a cube, whereas the second Pb atom with a coordination number of 9 adopts the shape of a tricapped trigonal prism common for lead compounds. [Pb(3)(XeF(2))(11)](PF(6))(6) and [Sr(3)(XeF(2))(10)](PF(6))(6) are formed when an excess of XeF(2) is used during the process of the crystallization of [M(XeF(2))(3)](PF(6))(2) from their aHF solutions.  相似文献   

18.
The reaction of Hg(OAc)(2) with 1,4-benzenedithiol in ethylenediamine at 80 °C yields [Hg(SC(6)H(4)S)(en)](n), while the reaction of Pb(OAc)(2) with 1,4-benzenedithiol in diethylenetriamine at 130 °C yields [Pb(SC(6)H(4)S)(dien)](n). Both products are crystalline materials, and structure determination by synchrotron X-ray powder diffraction revealed that both are essentially one-dimensional metal-organic polymers with -M-SC(6)H(4)S- repeat units. Diffuse reflectance UV-visible spectroscopy indicates band gaps of 2.89 eV for [Hg(SC(6)H(4)S)(en)](n) and 2.54 eV for [Pb(SC(6)H(4)S)(dien)](n), while density functional theory (DFT) band structure calculations yielded band gaps of 2.24 and 2.10 eV, respectively. The two compounds are both infinite polymers of metal atoms linked by 1,4-benzenedithiolate, the prototypical molecule for single-molecule conductivity studies, yet neither compound has significant electrical conductivity as a pressed pellet. In the case of [Pb(SC(6)H(4)S)(dien)](n) calculations indicate fairly flat bands and therefore low carrier mobilities, while the conduction band of [Hg(SC(6)H(4)S)(en)](n) does have moderate dispersion and a calculated electron effective mass of 0.29·m(e). Hybridization of the empty Hg 6s orbital with SC(6)H(4)S orbitals in the conduction band leads to the band dispersion, and suggests that similar hybrid materials with smaller band gaps will be good semiconductors.  相似文献   

19.
The formation of adducts of tris(pentafluorophenyl)borane with strongly coordinating anions such as CN(-) and [M(CN)(4)](2)(-) (M = Ni, Pd) is a synthetically facile route to the bulky, very weakly coordinating anions [CN[B(C(6)F(5))(3)](2)](-) and [M[CNB(C(6)F(5))(3)](4)](2-) which are isolated as stable NHMe(2)Ph(+) and CPh(3)(+) salts. The crystal structures of [CPh(3)][CN[B(C(6)F(5))(3)](2)] (1), [CPh(3)][ClB(C(6)F(5))(3)] (2), [NHMe(2)Ph](2)[Ni[CNB(C(6)F(5))(3)](4)].2Me(2)CO (4b.2Me(2)CO), [CPh(3)](2)[Ni[CNB(C(6)F(5))(3)](4)].2CH(2)Cl(2) (4c.2CH(2)Cl(2)), and [CPh(3)](2)[Pd[CNB(C(6)F(5))(3)](4)].2CH(2)Cl(2) (5c.2CH(2)Cl(2)) are reported. The CN stretching frequencies in 4 and 5 are shifted by approximately 110 cm(-1) to higher wavenumbers compared to the parent tetracyano complexes in aqueous solution, although the M-C and C-N distances show no significant change on B(C(6)F(5))(3) coordination. Zirconocene dimethyl complexes L(2)ZrMe(2) [L(2) = Cp(2), SBI = rac-Me(2)Si(Ind)(2)] react with 1, 4c or 5c in benzene solution at 20 degrees C to give the salts of binuclear methyl-bridged cations, [(L(2)ZrMe)(2)(mu-Me)][CN[B(C(6)F(5))(3)](2)] and [(L(2)ZrMe)(2)(mu-Me)](2)[M[CNB(C(6)F(5))(3)](4)]. The reactivity of these species in solution was studied in comparison with the known [[(SBI)ZrMe](2)(mu-Me)][B(C(6)F(5))(4)]. While the latter reacts with excess [CPh(3)][B(C(6)F(5))(4)] in benzene to give the mononuclear ion pair [(SBI)ZrMe(+).B(C(6)F(5))(4)(-)] in a pseudo-first-order reaction, k = 3 x 10(-4) s(-1), [(L(2)ZrMe)(2)(mu-Me)][CN[B(C(6)F(5))(3)](2)] reacts to give a mixture of L(2)ZrMe(mu-Me)B(C(6)F(5))(3) and L(2)ZrMe(mu-NC)B(C(6)F(5))(3). Recrystallization of [Cp' '(2)Zr(mu-Me)(2)AlMe(2)][CN[B(C(6)F(5))(3)](2)] affords Cp' '(2)ZrMe(mu-NC)B(C(6)F(5))(3) 6, the X-ray structure of which is reported. The stability of [(L(2)ZrMe)(2)(mu-Me)](+)X(-) decreases in the order X = [B(C(6)F(5))(4)] > [M[CNB(C(6)F(5))(3)](4)] > [CN[B(C(6)F(5))(3)](2)] and increases strongly with the steric bulk of L(2) = Cp(2) < SBI. Activation of (SBI)ZrMe(2) by 1 in the presence of AlBu(i)(3) gives extremely active ethene polymerization catalysts. Polymerization studies at 1-7 bar monomer pressure suggest that these, and by implication most other highly active ethene polymerization catalysts, are strongly mass-transport limited. By contrast, monitoring propene polymerization activities with the systems (SBI)ZrMe(2)/1/AlBu(i)(3) and CGCTiMe(2)/1/AlBu(i)(3) at 20 degrees C as a function of catalyst concentration demonstrates that in these cases mass-transport limitation is absent up to [metal] approximately 2 x 10(-5) mol L(-1). Propene polymerization activities decrease in the order [CN[B(C(6)F(5))(3)](2)](-) > [B(C(6)F(5))(4)](-) > [M[CNB(C(6)F(5))(3)](4)](2-) > [MeB(C(6)F(5))(3)](-), with differences in activation barriers relative to [CN[B(C(6)F(5))(3)](2)](-) of DeltaDeltaG = 1.1 (B(C(6)F(5))(4)(-)), 4.1 (Ni[CNB(C(6)F(5))(3)](4)(2-)) and 10.7-12.8 kJ mol(-)(1) (MeB(C(6)F(5))(3)(-)). The data suggest that even in the case of very bulky anions with delocalized negative charge the displacement of the anion by the monomer must be involved in the rate-limiting step.  相似文献   

20.
The reaction of 1:1 stoichiometries (1:1.5 for the nitrate/tetraethylene glycol (EO4) and pentaethylene glycol (EO5) complexes) of PbX(2) (X = NO(3), Br) with five- to eight-donor poly(ethylene glycols) (PEGs) in 3:1 CH(3)CN/CH(3)OH (CH(3)CN only for the nitrate/EO5 complex) followed by solvent evaporation resulted in six crystalline materials upon which X-ray structural analyses were carried out: [Pb(NO(3))(2)(EO4)](n)(), [Pb(NO(3))(2)(EO5)], [Pb(NO(3))(2)(EO6)], [PbBr(EO5)(&mgr;-Br)PbBr(2)].H(2)O, [PbBr(NCMe)(EO6)](2)[PbBr(2)(EO6)][PbBr(3)](2), and [PbBr(EO7)][PbBr(3)]. The nitrates crystallize as tight ion pairs with the PEG ligands coordinating in an equatorial plane around the Pb(2+) ions. Because EO4 has only five oxygen donors, this complex exhibits steric unsaturation which is overcome by a monodentate interaction with a third nitrate anion that is also coordinated to a neighboring Pb(2+) ion. The six donors of EO5 coordinate in an equatorial plane resulting in a 10-coordinate complex with trans, twisted, bidentate nitrate anions. The seven-donor hexaethylene glycol (EO6) only uses six of its oxygen donors to coordinate Pb(2+). [Pb(NO(3))(2)(EO4)](n)() is monoclinic, P2(1)/c, with a = 7.902(3) ?, b = 22.136(6) ?, c = 8.910(2) ?, beta = 90.96(3) degrees, and Z = 4. [Pb(NO(3))(2)(EO5)] is triclinic P&onemacr;, with a = 9.332(3) ?, b = 10.025(3) ?, c = 11.688(4) ?, alpha = 68.41(3) degrees, beta = 68.39(3) degrees, gamma = 68.58(3) degrees, and Z = 2. [Pb(NO(3))(2)(EO6)] is monoclinic P2(1)/c, with a = 16.289(4) ?, b = 10.773(4) ?, c = 12.329(4) ?, beta = 106.77(2) degrees, and Z = 4. Lead(II) bromide complexes with PEGs tend to crystallize as PEG complexed cations with polymeric lead(II) bromide anions. In the EO5 complex, bromide anions in the polymer also coordinate to the PEG-wrapped Pb(2+) cations. The hexa- and heptaethylene glycol (EO6 and EO7, respectively) complexes contain discreet ions. In these halide complexes, EO7 is the only PEG to expand the Pb(2+) coordination number from eight to nine. [PbBr(EO5)(&mgr;-Br)PbBr(2)].H(2)O is triclinic P&onemacr;, with a = 7.922(6) ?,b = 15.802(9) ?, c = 19.001(9) ?, alpha = 73.19(8) degrees, beta = 88.91(9) degrees, gamma = 87.22(9) degrees, and Z = 4. [PbBr(NCMe)(EO6)](2)[PbBr(2)(EO6)][PbBr(3)](2) is monoclinic P2(1)/c, with a = 14.389(4) ?, b = 31.931(9) ?, c = 8.029(2) ?, beta = 97.76(3) degrees, and Z = 2. [PbBr(EO7)][PbBr(3)] is monoclinic Cc, with a = 13.165(3) ?, b = 24.732(5) ?, c = 8.007(1) ?, beta = 94.58(2) degrees, and Z = 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号