首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
本文首次用AFM对非线性晶体的表面结构进行了研究。NPP晶体属单斜晶系,其表面结构与晶面有密切关系。用AFM对其解理(101)面和(001)的研究表明,这两个表面上的分子排列与体相结构一致,未发生重构;在(001)面上分子中的苯环和五元环可被区分开来。用AFM所测得的分子跃迁偶极矩与单斜P2_1晶体结构的二重轴之间的夹角为56°,接近理论值,说明NPP晶体具有很高的宏观二阶非线性活性。这些结果首次在实空间中直接给出了NPP晶体不同晶向的表面结构。  相似文献   

2.
本文对蚕豆中期染色体的超微结构和细胞化学特点进行了研究。在常规染色样品中发现,染色体内存在着一些低电子密度区域,该区域中有一种内在结构。Bernhard染色结果表明,这种内在结构是由直径15至20 nm的RNP颗粒和纤维组成的。这种RNP结构有的分布在染色体横切面的近中央区,有的分布在近边缘区。根据上述观察结果,本文讨论了这种RNP结构在染色体中的分布特点和有关染色体骨架的一些问题。  相似文献   

3.
结合作者近期的研究工作,重点介绍了如何把原子力显微镜(AFM)成像及单分子力谱结合(包括原位结合或者离位结合)起来,研究高分子之间的相互作用.本文涉及生物高分子(主要是核酸-蛋白质体系)以及合成高分子体系(如聚氧乙烯,PEO)的相关研究工作.对于生物高分子体系,主要以长链核酸(如双螺旋DNA及RNA)为探针,首先利用A...  相似文献   

4.
应用原子力显微镜(AFM)探测了Z100、P60和流动性光固化复合树脂(FLO) 3种光固化复合树脂的表面结构形貌、超微结构,测量修复体与牙体界面之间的距离,对树脂的聚合收缩进行了量化分析.从AFM图像及数据统计分析发现,不同组成的复合树脂表面具有不同的纳米结构.Z100的表面粗糙度最小,P60表面粗糙度最大.Z100表面聚集体颗粒的高度最小,为90.9 ~288.0 nm,主要分布在181.1 nm;P60表面聚集体颗粒的高度最大,为215 ~485 nm,主要分布在335 nm;FLO表面聚集体颗粒的高度分布在97.0 ~296 nm,主要分布在216 nm.Z100修复体与牙体界面距离和聚合收缩最大,与P60和FLO组相比有统计学差异(P<0.01);P60和FLO树脂与牙体界面距离和聚合收缩量相近,2组间无统计学差异(P>0.05).该研究为材料的改进和研制提供了依据.  相似文献   

5.
甘草多糖螺旋结构的原子力显微镜研究   总被引:16,自引:0,他引:16  
孙润广  张静 《化学学报》2006,64(24):2467-2472
用原子力显微镜(AFM)对甘草多糖的微观结构进行观察, 实验结果表明, 甘草多糖主要由葡萄糖、阿拉伯糖和半乳糖组成. 甘草多糖分子的稀溶液铺展在Ni2+处理的云母片上, 经干燥, 乙醇固定后, 获得稳定、重复的图像. 甘草多糖分子具有高度分枝的结构, 并且糖链间形成环状、柱状或近似于螺旋状的结构. 甘草多糖链呈多股紧密的螺旋结构, 这种现象可能与该多糖中分子间的Van der Waals相互作用以及糖链间氢键缔合有关.  相似文献   

6.
用AFM研究阳极氧化铝的不稳定生长   总被引:9,自引:0,他引:9  
孔令斌  陈淼  力虎林 《化学学报》2004,62(7):680-685
用原子力显微镜(AFM)研究了多孔阳极氧化铝(AAO)模板的不稳定生长. 结果表明:AAO模板的不稳定生长导致了纳米孔道结构有序度的降低.在H3PO4溶液中生长的AAO模板孔道结构稳定性较差;而在H2C2O4溶液中生长的AAO模板稳定性依赖于氧化电压和电流密度,在低电压和电流密度下稳定性较好,高电压和电流密度下稳定性较差. 充分利用这种不稳定生长特性,通过控制AAO模板的阳极氧化条件,可得到具有分枝孔道结构的特殊模板,这为利用模板法制备各种Y形或T形纳米线、管提供了新的发展空间.  相似文献   

7.
凝胶材料是生物系统的重要组成物质,在生物模拟、仿生等方面具有重大意义.最近凝胶方面的研究日益受到关注[1,2],高分子凝胶体系的研究也得到深入开展[3,4].在智能水凝胶、凝胶特性基础研究和医用凝胶材料等领域已取得了较大进展.  相似文献   

8.
王理  黎坚  杨亚江 《化学学报》2003,61(2):213-217
合成了一种新型凝胶因子,能在很低的浓度下使水发生凝胶化,形成水分子凝 胶。通过原子力显微镜(AFM)以及透射电子显微镜(TEM)对水分子凝胶的微观形态进 行了表征,表明凝胶因子可以在水中聚集、自组装成延伸的螺旋缠绕细纤维结构, 并且得出了纤维束的平均直径在100nm左右,平均孔径在100nm左右。利用示差扫描 量热(DSC)的数据,计算了水分子凝胶体系的平均孔径大小在50~100nm左右,与 AFM和TEM观测的结果较吻合,从而验证了DSC理论推导计算的正确性。同时还得到 了不同浓度的水分子凝胶的凝胶—溶胶相转变温度Tcs在55—72℃之间,而且随着 凝胶因子浓度的增加,水分子凝胶体系的平均孔径呈减小的趋势,凝胶—溶胶相转 变温度呈上升的趋势。  相似文献   

9.
利用原子力显微镜和分子技术研究海水微生物腐蚀(英文)   总被引:5,自引:0,他引:5  
方汉平  徐立冲  张彤 《电化学》2003,9(2):164-169
生物膜在自然界无处不在,但生物膜造成的腐蚀却基本上被忽视.本文展示了几种化学和微生物学新方法在海水微生物腐蚀研究中的应用.原子力显微镜用来揭示生物最初形成的机理和钢在受污染海水中的腐蚀程度,16SrDNA/RNA技术则用来分析生物膜中的微生物组成.试验结果表明,微生物腐蚀在6d内就已经开始了,腐蚀体积与时间的2.83次方成正比;腐蚀生物膜中的微生物以硫酸还原菌(脱硫弧菌科)为最多,其次是梭状芽孢杆菌.  相似文献   

10.
《物理化学学报》2005,21(8):867-872
利用原子力显微镜(AFM)成像技术来观察DL-缬氨酸晶体表面分子的规则排列, 研究表明对映体分子在DL-缬氨酸晶体中相互配对排列, 每个晶胞单元中包含两个对映体分子, 属于具有中心对称结构 群, 整个晶体是消旋的. 通过原子力显微镜对DL-缬氨酸晶体表面重复单元的测量结果与X衍射数据对比, 发现用AFM观察到的DL-缬氨酸晶体中分子表面形貌的规整排列的距离, 同X衍射得出的三斜晶系晶胞参数数据基本一致, 由此判定该晶体属于三斜晶系而不是单斜晶系. 探讨了利用纳米技术的研究手段在分子水平研究生命起源中的手性问题, 在确定的晶面上通过分子周期性结构排列规律, 对DL-缬氨酸晶体表面分子进行手性识别.  相似文献   

11.
The bulk mechanical properties of a blend of elastomers are found to depend on the micro and nano scale morphology of the phases of the materials in the blend. In this study, we examine the phase morphology of blends of incompatible elastomers using Atomic Force Microscopy (AFM). Specifically, nanoindentation and Tapping Mode AFM (TMAFM) imaging techniques are used as experimental tools for mapping the composition of unfilled elastomeric blends. Depending on the composition of the blend, either co‐continuous or discontinuous domain/matrix morphology is observed. To identify the different components in bromobutyl (BIIR)/natural rubber (NR) blends, nanoscale indentation measurements were made on the observed phase‐separated regions. Results from force mode AFM and mechanical measurements of bulk NR and BIIR are used to assist in the interpretation of the TMAFM results for the BIIR/NR blends. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 492–503, 2006  相似文献   

12.
Spherulites are common structures of semi-crystalline polymers. It has been known that semi-crystalline polymers can form spherulites when crystallized from solution or from melt. A dark Maltese cross of a spherulite could be easily observed under the polarized optical microscopy (POM). Moreover, some spherulites show an additional alternating dark and bright concentric ring structure that is attributed to the regular twisting of the radial crystallite ribbons as they grow from the spherulit…  相似文献   

13.
We observed the surface morphology and adhesive interaction of adsorbents on rubber substrates by atomic force microscopy (AFM). The detachment of adsorbents from rubber substrates is an important issue for various machines like home appliances and laundry machine. Since a clean surface of the functioning parts is required, a frequent cleaning process must be developed. In particular, dust and lint have a tendency to bind to the rubber surface of a laundry machine. Several practical methods have been attempted to remove these particles from the surface. Pure water, detergent, sodium hypochlorite (65 °C), and cold water (18 °C) are treated onto artificial dust and lint mixtures on rubber with water fluid by rapid rpm. The dust‐and‐lint adsorbents are investigated by AFM after the treatment, and topographic images and force–distance (F–D) curves were generated for the samples. The roughness, measured as the root mean square, is a key factor to judge the cleaning quality. From the F–D curves, we are able to obtain adhesive energy in addition to adhesive force which will yield qualitative measures of the interactions between the remaining adsorbents and the rubber surface. Considering the values that were measured, hot water with water fluid by rapid rpm offers the best performance when cleaning the surface. The chemical like sodium hypochlorite is good for thinning the materials, but it solidifies them, which is eventually detrimental to proper functioning. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The organization of bacteriorhodopsin (bR) within reconstituted purple membranes (RPM) was examined using atomic force microscopy (AFM). Five reconstituted species were examined: RPM 3 (bR/native polar lipids/dimyristoylphosphatidylcholine (DMPC) in a 1:9:14 molar ratio), RPM 4 (bR/native polar lipids in a 1:7 molar ratio), RPM 5 (bR/native polar lipids/1,2-di-O-phytanyl-sn-glycerol in a 1:3.5:6.1 molar ratio), RPM 6 (bR/native polar lipids/1,2-di-O-phytanyl-sn-glycero-3-phosphocholine in a 1:3.5:4.9 molar ratio), and RPM 7 (bR/native polar lipids/1,2-diphytanoyl-sn-glycero-3-[phospho-l-serine] in a 1:3.5:4.6 molar ratio). RPM 3 patches adsorbed onto mica exhibit domains of crystallized bR trimers arranged in a hexagonal packing structure, similar to those found in native purple membrane (NPM). These domains are enclosed by DMPC-rich regions. RPM 4 patches were observed to have larger domains of crystallized bR, with trimer orientation 30° different from that found in NPM. The bR-rich domains are enclosed by a large, protein-free, lipid-rich region. The topography of RPM 5 was difficult to resolve as the surface had no discernable patterns or structure. The topographies of RPM 6 and 7 were similar to that found in RPM 3 in that higher domains were formed within the patch adsorbed onto mica. They may contain protein-rich regions, but clear images of protein arrangement could not be obtained using AFM. This may be a result of imaging limitations or of the lack of organization of bR within these domains.  相似文献   

15.
Aggrecan is a bottlebrush shaped macromolecule found in the extracellular matrix of cartilage. The negatively charged glycosaminoglycan (GAG) chains attached to its protein backbone give aggrecan molecules a high charge density, which is essential for exerting high osmotic swelling pressure and resisting compression under external load. In solution, aggrecan assemblies are insensitive to the presence of calcium ions, and show distinct osmotic pressure versus concentration regimes. The aim of this study is to investigate the effect of ionic environment on the structure of aggrecan molecules adsorbed onto well‐controlled mica surfaces. The conformation of the aggrecan was visualized using Atomic Force Microscopy. On positively charged APS mica the GAG chains of the aggrecan molecules are distinguishable, and their average dimensions are practically unaffected by the presence of salt ions. With increasing aggrecan concentration they form clusters, and at higher concentrations they form a continuous monolayer of conforming molecules. On negatively charged mica, the extent of aggrecan adsorption varies with salt composition. Understanding aggrecan adsorption onto a charged surface provides insight into its interactions with bone and implant surfaces in the biological milieu. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

16.
We propose herein a method to study local surface charge dissipation in dielectric films using force spectroscopy technique of atomic force microscopy. By using a normalization procedure and considering an analytical expression of the tip‐sample interaction force, we could estimate the characteristic time decay of the dissipation process. This approach is completely independent of the atomic force microscopy tip geometry and considerably reduces the amount of experimental data needed for the calculation compared with other techniques. The feasibility of the method was demonstrated in a freshly cleaved mica surface, in which the local charge dissipation after cleavage followed approximately a first‐order exponential law with the characteristic time decay of approximately 7–8 min at 30% relative humidity (RH) and 2–3.5 min at 48% RH. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Ellipsometry and atomic force microscopy (AFM) were used to study the film thickness and the surface roughness of both ‘soft’ and solid thin films. ‘Soft’ polymer thin films of polystyrene and poly(styrene–ethylene/butylene–styrene) block copolymer were prepared by spin‐coating onto planar silicon wafers. Ellipsometric parameters were fitted by the Cauchy approach using a two‐layer model with planar boundaries between the layers. The smooth surfaces of the prepared polymer films were confirmed by AFM. There is good agreement between AFM and ellipsometry in the 80–130 nm thickness range. Semiconductor surfaces (Si) obtained by anisotropic chemical etching were investigated as an example of a randomly rough surface. To define roughness parameters by ellipsometry, the top rough layers were treated as thin films according to the Bruggeman effective medium approximation (BEMA). Surface roughness values measured by AFM and ellipsometry show the same tendency of increasing roughness with increased etching time, although AFM results depend on the used window size. The combined use of both methods appears to offer the most comprehensive route to quantitative surface roughness characterisation of solid films. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Tapping mode atomic force microscopy was used to study the bacterial polysaccharide curdlan deposited from dimethyl sulfoxide (Me2SO) and NaOH aqueous solutions. For curdlan in Me2SO, flexible single chains corresponding to a disordered conformation were observed at a concentration of 5 mg/l, and the chain diameter was measured to be 0.65±0.05 nm, which showed good agreement with the expected value of the single polysaccharide chain. Because the concentration of curdlan increased, the chains became more rigid and aggregated, subsequently, the network structures of curdlan appeared. However, curdlan samples deposited from a 5 mM NaOH solution showed entirely different conformations. The chains observed were almost in the form of micelles of several nanometers, which were supermolecular assemblies. The heterogeneously dense zones were observed as the curdlan concentration increased to 40 mg/l. When the concentration of curdlan was above 100 mg/l, which might cause the real concentration of curdlan on the mica substrate after drying treatment exceeding some critical value of gelation, gel network structures were formed. Keeping on increasing the concentration of curdlan, the image showed a more homogeneous fibrous network.  相似文献   

19.
With the aid of atomic force microscopy, the intermolecular forces between acetyleholinesterases (AChE) and its natural substrate acetylcholine (ACh) have been studied. Through force spectrum measurement based on imaging of AChE molecules it was found that the attraction force between individual molecule pairs of ACh and AChE was (10±1) pN just before the quaternary ammonium head of ACh got into contact with the negative end of AChE and the decaying distance of attraction was (4±1) nm from the surface of ACHE. The adhesion force between individual ACh and AChE molecule pairs was (25±2) pN, which had a decaying feature of fast-slow-fast (FSF). The attraction forces between AChE and choline (Ch), the quaternary ammonium moiety and hydrolysate of ACh molecule, were similar to those between AChE and ACh. The adhesion forces between AChE and Ch were (20±2) pN, a little weaker than that between ACh and ACHE. These results indicated that AChE had a steering role for the diffusion of ACh toward it and had r  相似文献   

20.
Atomic force microscopy (AFM) is an emerging technique for a variety of uses involving the analysis of cells. AFM is widely applied to obtain information about both cellular structural and subcellular events. In particular, a variety of investigations into membrane proteins and microfilaments were performed with AFM. Here, we introduce applications of AFM to molecular imaging of membrane proteins, and various approaches for observation and identification of intracellular microfilaments at the molecular level. These approaches can contribute to many applications of AFM in cell imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号