首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The transient one-dimensional Burgers equation is solved by a mixed formulation of the Green element method (GEM) which is based essentially on the singular integral theory of the boundary element method (BEM). The GEM employs the fundamental solution of the term with the highest derivative to construct a system of discrete first-order non- linear equations in terms of the primary variable, the velocity, and its spatial derivative which are solved by a two-level generalized and a modified time discretization scheme and by the Newton–Raphson algorithm. We found that the two-level scheme with a weight of 0ċ67 and the modified fully implicit scheme with a weight of 1ċ5 offered some marginal gains in accuracy. Three numerical examples which cover a wide range of flow regimes are used to demonstrate the capabilities of the present formulation. Improvement of the present formulation over an earlier BE formulation which uses a linearized operator of the differential equation is demonstrated. © 1997 by John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents a new neural network‐boundary integral approach for analysis of steady viscous fluid flows. Indirect radial basis function networks (IRBFNs) which perform better than element‐based methods for function interpolation, are introduced into the BEM scheme to represent the variations of velocity and traction along the boundary from the nodal values. In order to assess the effect of IRBFNs, the other features used in the present work remain the same as those used in the standard BEM. For example, Picard‐type scheme is utilized in the iterative procedure to deal with the non‐linear convective terms while the calculation of volume integrals and velocity gradients are based on the linear finite element‐based method. The proposed IRBFN‐BEM is verified on the driven cavity viscous flow problem and can achieve a moderate Reynolds number of 1400 using a relatively coarse uniform mesh. The results obtained such as the velocity profiles along the horizontal and vertical centrelines as well as the properties of the primary vortex are in very good agreement with the benchmark solution. Furthermore, the secondary vortices are also captured by the present method. Thus, it appears that an ability to represent the boundary solution accurately can significantly improve the overall solution accuracy of the BEM. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
New discrete element equations or coefficients are derived for the transient 1D diffusion–advection or transport equation based on the Green element replication of the differential equation using linear elements. The Green element method (GEM), which solves the singular boundary integral theory (a Fredholm integral equation of the second kind) on a typical element, gives rise to a banded global coefficient matrix which is amenable to efficient matrix solvers. It is herein derived for the transient 1D transport equation with uniform and non-uniform ambient flow conditions and in which first-order decay of the containment is allowed to take place. Because the GEM implements the singular boundary integral theory within each element at a time, the integrations are carried out in exact fashion, thereby making the application of the boundary integral theory more utilitarian. This system of discrete equations, presented herein for the first time, using linear interpolating functions in the spatial dimensions shows promising stable characteristics for advection-dominant transport. Three numerical examples are used to demonstrate the capabilities of the method. The second-order-correct Crank–Nicolson scheme and the modified fully implicit scheme with a difference weighting value of two give superior solutions in all simulated examples. © 1997 John Wiley & Sons, Ltd.  相似文献   

4.
A dual boundary element formulation is presented for elastoplastic crack problems using a variable stiffness approach. In this approach the Von Mises yield criterion with strain hardening is used and the unknown non-linear terms, as the initial strains, are now defined in function of the scalar flow factors. Dual BEM variable stiffness formulation, based on the utilisation of the traction equation on one of the crack surfaces and the displacement equation on the other, is presented for the solution of general elastoplastic fracture mechanics problems. The validity of the present formulation has been assessed by comparing with the well known iterative dual BEM elastoplastic approach.  相似文献   

5.
We will derive the fundamental generalized displacement solution, using the Radon transform, and present the direct formulation of the time-harmonic boundary element method (BEM) for the two-dimensional general piezoelectric solids. The fundamental solution consists of the static singular and the dynamics regular parts; the former, evaluated analytically, is the fundamental solution for the static problem and the latter is given by a line integral along the unit circle. The static BEM is a component of the time-harmonic BEM, which is formulated following the physical interpretation of Somigliana’s identity in terms of the fundamental generalized line force and dislocation solutions obtained through the Stroh–Lekhnitskii (SL) formalism. The time-harmonic BEM is obtained by adding the boundary integrals for the dynamic regular part which, from the original double integral representation over the boundary element and the unit circle, are reduced to simple line integrals along the unit circle.The BEM will be applied to the determination of the eigen frequencies of piezoelectric resonators. The eigenvalue problem deals with full non-symmetric complex-valued matrices whose components depend non-linearly on the frequency. A comparative study will be made of non-linear eigenvalue solvers: QZ algorithm and the implicitly restarted Arnoldi method (IRAM). The FEM results whose accuracy is well established serve as the basis of the comparison. It is found that the IRAM is faster and has more control over the solution procedure than the QZ algorithm. The use of the time-harmonic fundamental solution provides a clean boundary only formulation of the BEM and, when applied to the eigenvalue problems with IRAM, provides eigen frequencies accurate enough to be used for industrial applications. It supersedes the dual reciprocity BEM and challenges to replace the FEM designed for the eigenvalue problems for piezoelectricity.  相似文献   

6.
A direct boundary element method (BEM) has been studied in the paper based on a set of sufficient and necessary boundary integral equations (BIE) for the plane harmonic functions. The new sufficient and necessary BEM leads to accurate results while the conventional insufficient BEM will lead to inaccurate results when the conventional BIE has multiple solutions. Theoretical and numerical analyses show that it is beneficial to use the sufficient and necessary BEM, to avoid hidden dangers due to non-unique solution of the conventional BIE.  相似文献   

7.
基于复数矢径虚拟边界积分法,通过将虚拟积分曲线上的未知源强密度函数用Fourier级数展开,同时借助快速数值Fourier变换计算程序,提出了一种求解二维任意形状空穴声辐射和散射问题的复数矢径虚拟边界谱方法.该方法具有以下特点:(1)不存在奇异积分处理;(2)采用复数矢径虚拟边界积分方法,不仅保证了解的唯一性,而且由于虚拟源强密度函数采用Fourier级数展开,克服了用单元离散方法不能用于较高频率范围的缺点;(3)采用快速数值Fourier变换技术使计算效率大幅度提高.文中给出的计算结果表明:在求解任意形状二维空穴声辐射和散射问题上较通常采用的FEM、BEM和VBEM更为有效.  相似文献   

8.
This paper presents a boundary element formulation and numerical implementation of the problem of small axisymmetric deformation of viscoplastic bodies. While the extension from planar to axisymmetric problems can be carried out fairly simply for the finite element method (FEM), this is far from true for the boundary element method (BEM). The primary reason for this fact is that the axisymmetric kernels in the integral equations of the BEM contain elliptic functions which cannot be integrated analytically even over boundary elements and internal cells of simple shape. Thus, special methods have to be developed for the efficient and accurate numerical integration of these singular and sensitive kernels over discrete elements. The accurate determination of stress rates by differentiation of the displacement rates presents another formidable challenge.A successful numerical implementation of the boundary element method with elementwise (called the Mixed approach) or pointwise (called the pure BEM or BEM approach) determination of stress rates has been carried out. A computer program has been developed for the solution of general axisymmetric viscoplasticity problems. Comparisons of numerical results from the BEM and FEM, for several illustrative problems, are presented and discussed in the paper. It is possible to get direct solutions for the simpler class of problems for cylinders of uniform cross-section, and these solutions are also compared with the BEM and FEM results for such cases.  相似文献   

9.
This paper describes the Eulerian–Lagrangian boundary element model for the solution of incompressible viscous flow problems using velocity–vorticity variables. A Eulerian–Lagrangian boundary element method (ELBEM) is proposed by the combination of the Eulerian–Lagrangian method and the boundary element method (BEM). ELBEM overcomes the limitation of the traditional BEM, which is incapable of dealing with the arbitrary velocity field in advection‐dominated flow problems. The present ELBEM model involves the solution of the vorticity transport equation for vorticity whose solenoidal vorticity components are obtained iteratively by solving velocity Poisson equations involving the velocity and vorticity components. The velocity Poisson equations are solved using a boundary integral scheme and the vorticity transport equation is solved using the ELBEM. Here the results of two‐dimensional Navier–Stokes problems with low–medium Reynolds numbers in a typical cavity flow are presented and compared with a series solution and other numerical models. The ELBEM model has been found to be feasible and satisfactory. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
The two‐dimensional convection–diffusion‐type equations are solved by using the boundary element method (BEM) based on the time‐dependent fundamental solution. The emphasis is given on the solution of magnetohydrodynamic (MHD) duct flow problems with arbitrary wall conductivity. The boundary and time integrals in the BEM formulation are computed numerically assuming constant variations of the unknowns on both the boundary elements and the time intervals. Then, the solution is advanced to the steady‐state iteratively. Thus, it is possible to use quite large time increments and stability problems are not encountered. The time‐domain BEM solution procedure is tested on some convection–diffusion problems and the MHD duct flow problem with insulated walls to establish the validity of the approach. The numerical results for these sample problems compare very well to analytical results. Then, the BEM formulation of the MHD duct flow problem with arbitrary wall conductivity is obtained for the first time in such a way that the equations are solved together with the coupled boundary conditions. The use of time‐dependent fundamental solution enables us to obtain numerical solutions for this problem for the Hartmann number values up to 300 and for several values of conductivity parameter. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
The boundary element method is used for the modal analysis of free vibration of 2-D composite structures in this paper. Since the particular solution method is used to treat the terms of body forces (inertial forces) in the equation of motion, only static fundamental solutions are needed in solving the problem. For an isotropic cantilever beam, the numerical results obtained by using the BEM presented in this paper are in good agreement, with, those of using FEM or other BEM, but this BEM can also be used to analyze problems for anisotropic materials. For simply supported composite laminated beams, the comparisons of the numerical reslts obtained by this method with the analytical results obtained by 1-D laminated beam theory indicate that if the ratio of length/thickness is greater than 20, the results of the two methods are in good agreement, but if the ratio of length/thickness is less than 20, big errors will occur for 1-D laminated beam theory.  相似文献   

12.
To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitrary orientation. The boundary integral equation(BIE) representation solves the two-dimensional convected Helmholtz equation(CHE) and its fundamental solution, which must satisfy a new Sommerfeld radiation condition(SRC) in the physical space. In order to facilitate conventional formulations, the variables of the advanced form are expressed only in terms of the acoustic pressure as well as its normal and tangential derivatives, and their multiplication operators are based on the convected Green's kernel and its modified derivative. The proposed approach significantly reduces the CPU times of classical computational codes for modeling acoustic domains with arbitrary mean flow. It is validated by a comparison with the analytical solutions for the sound radiation problems of monopole,dipole and quadrupole sources in the presence of a subsonic uniform flow with arbitrary orientation.  相似文献   

13.
The meshless local boundary integral equation method is a currently developed numerical method, which combines the advantageous features of Galerkin finite element method ( GFEM ), boundary element method (BEM) and element free Galerkin method (EFGM), and is a truly meshless method possessing wide prospects in engineeringapplications. The companion solution and all the other formulas required in the meshless local boundary integral equation for a thin plate were presented, in order to make this method apply to solve the thin plate problem.  相似文献   

14.
The application of boundary element methods (BEM) to soil-structure interaction problems is still restricted to cases where fundamental solutions are known. Hence, a large number of engineering problems cannot be solved by the BEM. Therefore, an alternative approach is presented here which establishes new boundary integral equations (BIEs) for the computation of the entries of the BEM matrices by means of the spatial Fourier transform.For these alternative BIEs, we need only the transform of the fundamental solution and not the fundamental solution itself. The former is always available as long as the underlying differential operator is linear and has constant coefficients. The approach is possible for all variants of the BEM. For Galerkin approaches, the double integrations over the boundary panels are replaced by single integrations over the infinite domain.  相似文献   

15.
Anti-plane electroelastic problems are studied by the Trefftz boundary elementmethod (BEM) in this paper. The Trefftz BEM is based on a weighted residual formulation andindirect boundary approach. In particular the point-collocation and Galerkin techniques, in whichthe basic unknowns are the retained expansion coefficients in the system of complete equations,are considered, Furthermore, special Trefftz functions and auxiliary functions which satisfy ex-actly the specified boundary conditions along the slit boundaries are also used to derive a specialpurpose element with local defects. The path-independent integral is evaluated at the tip of acrack to determine the energy release rate for a mode Ⅲ fracture problem. In final, the accuracyand efficiency of the Trefftz boundary element method are illustrated by an example and thecomparison is made with other methods.  相似文献   

16.
IntroductionThelimitanalysisofstructuresisoneofthemostpracticalandusefulbranchesinplasticity .Ithasimportantapplicationbackgroundforproblemssuchasthedeterminationofloadcarryingcapacityandplasticformingofmetal.Thepurposeofthelimitanalysisofstructuresistoprovidereliabletheoreticalbasesforengineeringdesignandsafetyassessment.Asasimplifiedmethodforelastoplasticproblems,limitanalysisneednotrequirethehistoryofloadandcancomputethelimitloadsdirectlyinsteadofelastoplasticincrementalcomputationwhichisus…  相似文献   

17.
Thermal effects are well known to manifest themselves as additional volume integral terms in the direct formulation of the boundary integral equation (BIE) for linear elastic solids when using the boundary element method (BEM). This domain integral has been successfully transformed in an exact manner to surface ones only in isotropy and in 2D anisotropy, thereby restoring the BEM as a truly boundary solution technique. The difficulties with extending it to 3D general anisotropic solids lie in the mathematical complexity of the Green’s function and its derivatives for such materials. These quantities are required items in the BEM formulation. In this paper, the exact, analytical transformation of the volume integral associated with thermal effects to surface ones is achieved for a transversely isotropic material using a similar approach which the authors have previously employed for the same task in BEM for 2D general anisotropy. A numerical scheme, however, needs to be employed to evaluate some of the new terms introduced in the surface integrals that arise from this process here. The mathematical soundness of the formulation is demonstrated by a few examples; the numerical results obtained are checked by alternative means, including those obtained from the commercial FEM code, ANSYS.  相似文献   

18.
Abstract. A coupled boundary element-finite element procedure, namely, the Green element method (GEM) is applied to the solution of mass transport in heterogeneous media. An equivalent integral equation of the governing differential equation is obtained by invoking the Green's second identity, and in a typical finite element fashion, the resulting equation is solved on each generic element of the problem domain. What is essentially unique about this procedure is the recognition of the particular advantages and particular features possessed by the two techniques and their effective use for the solution of engineering problems.By utilizing this approach, we observe that the range of applicability of the boundary integral methods is enhanced to cope with problems involving media heterogeneity in a straightforward and realistic manner. The method has been used to investigate problems involving various functional forms of heterogeneity, including head variations in a stream-heterogeneous aquifer interaction and in all these cases encouraging results are obtained without much difficulty.  相似文献   

19.
本文在文[1]的基础上,采用子结构法建立了多层复合板的边界元方法,对具有中心园孔[0°/90°]_s的层合板的层间应力作了计算,同有限元法的结果进行了比较,结果表明,应用边界元法处理这类问题,单元划分少,节约了计算机时,而且有较高的计算精度。  相似文献   

20.
压电介质二维边界积分方程中的基本解   总被引:8,自引:0,他引:8  
由于压电介质的变形-电场耦合效应及压电响应的各向异性,使解析求解压电介质问题的工作变量十分复杂,若采用边界元数值方法求解,必须具备积分方程中的基本解,本文根据电磁场方程及连续介质力学的耦合性质论层出了二维无限域中分别在单位力及单位电荷载作用下的位移场,电势场、应力场和电位移场的解,从而确立了边界积分方程中所必需的八个基本解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号