首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Relativistic and non-relativistic Hartree—Fock calculations are reported for the tetrahedral model systems CeH4 and ThH4 and the octahedral model systems CrH6, MoH6, WH6, UH6 and (106)H6. The effects of relativity on bond strengths and lengths are obtained from fits to a Morse potential. The calculated CrH, MoH and WH bond lengths are comparable to those measured in the organometallic systems. Their relativistic contractions are 0.36, 0.8 and 2.8%, respectively. For the MHn systems (M = Ti, Zr, Hf, Th, Cr, Mo, W), the calculated MH bond lengths differ in the average from the experimental MX by 16, 39, ?3, 42, 55 and 75 pm for X = Hb(BH4), C(σ), F, Cl, Br and I, respectively, suggesting a “hydridic” hydrogen covalent radius of 58 pm. A comparison of the bond lengths for CeH4 and HfH4 yields the value of 19 pm for the lanthanoid contraction. A corresponding non-relativistic calculation gives 16 pm. Thus the lanthanoid contraction is predominantly a non-relativistic shell-structure effect. A similar comparison of ThH4 and (104)H4 or of UH6 and (106)H6 predicts an actinoid contraction of 30 pm for compounds of the present type. The fact that WH bonds are stronger than MoH bonds is probably due to relativistic effects. Strong s-p-d hybridization is found for CeH4 and ThH4 with only weak f AO contributions. For UH6 the f AO participation is four times larger and has a double-humped radial distribution suggesting “true” 5f participation in bonding. Adding the 5f:s shortens the bond length by 8 and 22 pm for ThH4 and UH6, respectively, also indicating s-p-d-f hybridization for uranium. The 7p radius for Th is larger than the 6d radius and the norm N(7p), of the t2 MO increases with increasing bond length R. Therefore this t2 MO causes a potential V(R), that is more attractive than in the case without 7p functions, even at R of the order of 500 pm. Possible connection with hydrogenation catalysis by elements like Th and Ti is discussed.  相似文献   

2.
Relativistic and non-relativistic Hartree-Fock one-centre expansion calculations including valence s and p orbitals are reported for CuH, AgH and AuH molecules. Relativistic effects diminish the bond length by 0.86, 2.0 and 4.9%, respectively. Without p functions this relativistic contraction is 6.0% for AuH. Relativistic effects strengthen the chemical bond by 0.002, 0.013 and 0.053 au, respectively. The calculated force constants are in reasonable agreement with experiment. The non-relativistic valence orbital energies of AgH and AuH are quite similar while the relativistic ones are not.  相似文献   

3.
The complex [Re2(HPO4)2(H2PO4)2(H2O)2] · 4H2O (I) was synthesized and investigated by conductometric, potentiometric, electronic and vibration spectroscopic methods. Thermal behavior of the title compound was studied and its molecular structure was determined from X-ray diffraction data. In the dimeric neutral complex, the bridging pairs of the hydrophosphate and dihydrophosphate groups close four five-membered Re-O-P-O-Re chelate rings. The O atom of water molecule occupies the axial position in the metal coordination polyhedron. The Re-Re distance 2.2168(8) ? corresponds to quadruple bond. Original Russian Text ? A.V. Shtemenko, V.G. Stolyarenko, K.V. Domasevich, 2007, published in Koordinatsionnaya Khimiya, 2007, Vol. 33, No. 2, pp. 83–88.  相似文献   

4.
5.
Le sel double Cs2Mg(MoO4)2, 4H2O cristallise dans le syste`me monoclinique, groupe d'espace P21/c avecZ = 2. La structure ae´te´re´soluea`l'aide d'une synthe`se de Patterson et de sommations de Fourier tridimensionnelles. La valeur finale du facteur de reliabilite´estR = 0.068. L'environnement octae´drique du magne´sium est assure´par quarte mole´cules d'eau et deux atomes d'oxyge`ne de groupements molybdates. Dans le cas du sel (NH4)2Mg(MoO4)2, 2H2O qui cristallisee´galement dans le syste`me monoclinique, groupe d'espace P21/c avec Z = 2, l'environnement du magne´sium est assure´par deux mole´cules d'eau et quatre atomes d'oxyge`ne de groupements molybdates. La structure est de type “kro¨hnkite”. La valeur finale du facteur de reliabilite´est: R = 0.061.  相似文献   

6.
Ab initio molecular orbital calculations have been carried out on H3AlOH2, (H2AlOH)2, and some related species, and the charge distribution and bonding are discussed on the basis of population analyses. It is found that the equilibrium conformation around the O atom in H3AlOH and (H2AlOH)2 is intermediate between trigonal and tetrahedral. The energy minima are, however, very shallow. In H3AlOH2 the angle between the Al-O bond and the H2O plane is 27°, in (H2AlOH)2 the angle between the two O-H bonds and the Al2O2 ring plane is 25°. The energy of a planar conformation of H3AlOH2 is 0.19 kcal mol-1, the energy of a planar conformation of (H2AlOH)2 0.35 kcal mol-1 above the equilibrium conformation. There is no indication for the formation of dative pπ-dπ bonds between O and Al in the two molecules. It is suggested that the conformation adopted by analogous alkyl derivatives, R3AlOR'2 and (R2AlOR')n is determined by intramolecular van der Waals repulsion.  相似文献   

7.
The structural and energetic characteristics of the lowest-lying structures for isolated molecules and ions of light-metal boro- and aluminohydrides L(MH4)4, HL(MH4)3, H2L(MH4)2, and H3L(MH4) (L = Al, Sc, Ti, V, Cr; M = B, Al) with different coordination modes of BH4- and AlH4 groups were calculated by the perturbation theory (MP2), coupled cluster (CCSD(T)), and density functional theory (B3LYP) methods using the 6-31G*, 6-311+G**, and 6-311++G** basis sets. The results are compared with the computational data obtained at the same level of theory for related complexes L(MH4)3, HL(MH4)2, H2L(MH4), L(MH4)2, and HL(MH4). The preferable coordination modes of the ligands in these complexes are analyzed, and the energies of dissociation with elimination of BH3 (AlH3) molecules and BH4 (AlH4) anions in various series of related hydroborates and hydroaluminates are estimated. The structure and relative stability of classical hydride and (μ-H2)-hydrogen complexes in the H2L (MH4)2 and H3L(MH4) systems are discussed. Original Russian Text ? O.P. Charkin, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 6, pp. 1015–1024.  相似文献   

8.
Molecular dynamics method is used for studying complex permittivity ɛ and the stability of individual water clusters as a function of the number of involved molecules (7 ≤ i ≤ 20) and also the corresponding characteristics of water aggregates with a captured CO2 or CH4 molecule. Absorption of the latter molecules leads to considerable changes in dielectric properties and stability of clusters. In particular, upon the addition of a CO2 molecule to a water cluster, the oscillation parameters of the real and imaginary parts of the permittivity change. Capture of a CH4 molecule by a water aggregate changes the ɛ(ω) dependence from the relaxation to resonance type. For i ≥ 15, the thermal stability of individual water clusters can be lower than that of aggregates CO2(H2O) i and CH4(H2O) i . The mechanical stability of (H2O) i ≥ 13 clusters can exceed that of heteroclusters under consideration. Clusters (H2O) i and CO2(H2O) i have approximately the same dielectric stability, whereas aggregates CH4(H2O) i exhibit lower stability with respect to electric perturbations. Original Russian Text ? A.E. Galashev, V.N. Chukanov, A.N. Novruzov, O.A. Novruzova, 2007, published in Elektrokhimiya, 2007, Vol. 43, No. 2, pp. 143–153.  相似文献   

9.
The title compounds have been prepared in water by reaction of SbF3 with dihydrogen phosphates or arsenates and characterized by single crystal X-ray work, IR, Raman, and Mössbauer spectroscopy. They have identical layer structures. Layers of composition [(SbF)XO4] (X = P, As) were formed by sharing four corners between XO4 tetrahedra and SbFO4 pseudooctahedra. The lengths of the terminal Sb---F bond (with the lone pair in a trans-position) and the Sb---O bonds are 192 and 219 pm, respectively. The stacking of the layers and the interlayer distance depend on the cations and the number of intercalated water molecules. In Na(SbF)AsO4 the Na+ ion is coordinated by only two oxygen atoms within 300 pm. Crystal data: Na(SbF)PO4 · 5H2O, monoclinic, P21/m, A = 656.2(5), B = 654.1(5), C = 867.9(3) pm, β = 92.43(1)°, 889 reflections, 81 parameters, R = 0.044, Rw = 0.046. NH4(SbF)PO4 · H2O, tetragonal, I4/m, A = 656.6(3), C = 1439.8(5) pm, 680 reflections, 31 parameters, R = 0.023, Rw = 0.021. Na(SbF)AsO4, tetragonal, P4/ncc, A = 671.8(1), C = 1756.4(4) pm, 1056 reflections, 28 parameters, R = 0.052, Rw = 0.065. NH4(SbF)AsO4 · 3H2O, tetragonal, P4/ncc, A = 683.8(2), C = 1873.0(7) pm, 1194 reflections, 30 parameters, R = 0.042, Rw = 0.050.  相似文献   

10.
Two zinc phosphates (ZnPO), [H2(N2C9H20)]·[Zn(H2PO4)4] (I) and [H2(N2C9H20)]2·[Zn2(HPO4)3(H2PO4)2]·H2O (II), are synthesized under hydrothermal conditions using 4-amino-2.2.6.6-tetramethylpiperidine as organic template. I crystallizes in space group with , , , α=92.57(1)°, β=89.76(1)°, γ=102.16(2)°, and Z=2. Its structure, refined to R=0.029 and Rw=0.076 for 4279 independent reflections, consists of [Zn(H2PO4)4]2− clusters held together through strong hydrogen bonds to form pseudo-layers between which the doubly protonated amine molecules are inserted. II is monoclinic, C2, with , , , β=103.72(5)°, and Z=4 (R=0.079, Rw=0.268, 2477 independent reflections). The structure of II consists of [Zn2(HPO4)3(H2PO4)2]4− inorganic (2D) layers built up from vertex-sharing [ZnO4] and [(H2/H)PO4] tetrahedra. Organic cations and water molecules ensure the connection between these layers via hydrogen bonds. It is shown that numerous (1D), (2D), e.g., [H2(N2C9H20)]2·[Zn2(HPO4)3(H2PO4)2]·H2O, and (3D) (ZnPO) result from the condensation of the [Zn(H2PO4)4]2− clusters.  相似文献   

11.
利用水热法在均苯三甲酸、六水氯化钴、甲酸铵和水的体系中合成了四水合均苯三甲酸二氢钴。该化合物晶体属于单斜晶系,对应的空间群为P21/c。磁性测量表明该化合物的钴离子之间存在反铁磁的相互作用,但直至2 K时也没有观察到磁有序。  相似文献   

12.
利用微波技术合成了配合物[Gd2(Gly)6(H2O)4](ClO4)6(H2O)5, 进行了化学成分分析、红外表征和热重分析. 应用X衍射仪测定其晶体结构, 该晶体为一维链结构, 属三斜晶系, P 空间群, 晶胞参数: a=1.1569(17) nm, b=1.4138(2) nm, c=1.5642(2) nm, α=96.910(2)°, β=102.735(2)°, γ=105.512(2)°, V=2.3606(6) nm3, Z=2, Dc=2.144 g•cm-3. 采用精密溶解-反应量热计, 通过设计热化学循环, 计算出了该配合物的标准摩尔生成焓为 -(7960.73±3.23) kJ•mol-1.  相似文献   

13.
Two vanadyl(IV) monohydrogenphosphate hydrates have been crystallized from aqueous media and their structures determined by single-crystal X-ray diffraction. The first, a tetrahydrate, VO(HPO4) · 4H2O, is triclinic, P1, with a = 6.379(2), b = 8.921(2), c = 13.462(3) Å, α = 79.95(2), β = 76.33(3), γ = 71.03(3)°. Final residuals of R1 = 0.058 and R2 = 0.065 were obtained using 1250 unique data and 140 parameters. The second was found to be the hemihydrate, VO(HPO4) · 0.5H2O, with orthorhombic symmetry, Pmmn. Complete structure solution and refinement using data from a 2.7 × 105 μm3 crystal gave atomic parameters in close agreement with those recently reported in a parallel study (C. C. Torardi and J. C. Calabrese, Inorg. Chem.23, 1308, 1984). Final residuals R1 = 0.041 and R2 = 0.042 were obtained on optimizing the 45 structural variables using 458 observed intensities. The structures of these two hydrates and that of the pyrophosphate, (VO)2P2O7, show a close correspondence. The degree of condensation of the vanadyl octahedra and phosphate tetrahedra, and the amount of water of crystallization in these materials are closely coupled and depend on the formation temperature.  相似文献   

14.
A cobalt phosphonate (H3O)6·[Co4(H2O)4(HPMIDA)2(PMIDA)2)]·2H2O, 1, has been synthesized from a mild solvothermal reaction of Co(II) ion with N-(phosphonomethyl)iminodiacetic acid (H4PMIDA). Compound 1 crystallizes in the triclinic space group with cell parameters of , , , α=93.06(3)°, β=99.66(3)°, γ=90.34(3)° and Z=1. Compound 1 shows a novel tetra-nuclear molecular structure. In the crystal lattice, molecules of 1 hydrogen bond to each other to form two-dimensional (2D) layers, which are further linked together by the co-crystallized H2O molecules and H3O+ counter ions through hydrogen bonding to form the 3D supramolecular network. Thermogravimetric analysis, IR spectrum, magnetic susceptibility and luminescent spectra are given.  相似文献   

15.
A new layered inorganic-organic hybrid aluminum phosphate-oxalate [H3N(CH2)4NH3]2[Al4(C2O4)(H2PO4)2(PO4)4]·4[H2O](AlPO-CJ25) has been synthesized hydrothermally, by using 1,4-diaminobutane (DAB) as structure-directing agent. The structure has been solved by single-crystal X-ray diffraction analysis and further characterized by IR, 31P MAS NMR, TG-DTA as well as compositional analyses. Crystal data: the triclinic space group P-1, a=8.0484(7) Å, b=8.8608(8) Å, c=13.2224(11) Å, α=80.830(6)°, β=74.965(5)°, γ=78.782(6)°, Z=2, R1[I>2σ(I)]=0.0511 and wR2(all data)=0.1423. The alternation of AlO4 tetrahedra and PO4 tetrahedra gives rise to the four-membered corner-sharing chains, which are interconnected through AlO6 octahedra to form the layered structure with 4,6-net sheet. Interestingly, oxalate ions are bis-bidentately bonded by participating in the coordination of AlO6, and bridging the adjacent AlO6 octahedra. The layers are held with each other through strong H-bondings between the terminal oxygens. The organic ammonium cations and water molecules are located in the large cavities between the interlayer regions.  相似文献   

16.
Compounds with the general formula Catx[Sc(H2O)z(SO4)y] · nH2O (Cat = NH4, H2Bipy (Bipy is 4,4′-bipyridine), and HEdp (Edp is ethylenedipyridine) are synthesized and identified by elemental analysis and IR spectral data. The X-ray diffraction analysis of (H2Bipy)[Sc(H2O)(SO4)2]2 · 2H2O shows that in the structure of this compound, the chains of ScO6 octahedra and SO4 tetrahedra are united to form ribbons due to the tridentate coordination of the sulfate ion. The ribbons form a framework, whose infinite cavities contain H2Bipy2+ cations.__________Translated from Koordinatsionnaya Khimiya, Vol. 31, No. 8, 2005, pp. 576–582.Original Russian Text Copyright © 2005 by Petrosyants, Ilyukhin, Sukhorukov.  相似文献   

17.
Two solid-state coordination compounds of rare earth metals with glycin, [Gd4/3Y2/3(Gly)6(H2O)4](ClO4)6·5H2O and [ErY(Gly)6(H2O)4](ClO4)6·5H2O were synthesized. The low-temperature heat capacities of the two coordination compounds were measured with an adiabatic calorimeter over the temperature range from 78 to 376 K. [Gd4/3Y2/3(Gly)6(H2O)4](ClO4)6·5H2O melted at 342.90 K, while [ErY(Gly)6(H2O)4](ClO4)6·5H2O melted at 328.79 K. The molar enthalpy and entropy of fusion for the two coordination compounds were determined to be 18.48 kJ mol−1 and 53.9 J K−1 mol−1 for [Gd4/3Y2/3(Gly)6(H2O)4](ClO4)6·5H2O, 1.82 kJ mol−1 and 5.5 J K−1 mol−1 for [ErY(Gly)6(H2O)4](ClO4)6·5H2O, respectively. Thermal decompositions of the two coordination compounds were studied through the thermogravimetry (TG). Possible mechanisms of the decompositions are discussed.  相似文献   

18.
A novel malonate-bridged copper (II) compound of formula {[Cu4(4,4′-bpy)8(mal)2(H2O)4](ClO4)2(H2O)4(CH3OH)2}n (4,4′-bpy = 4,4′-bipyridine; mal = malonate dianion) has been prepared and structurally characterized by X-ray crystallography. This compound exhibits a novel three-dimensional network being composed of Cu-4,4′-bipyridine layers which are pillared by malonate bridge ligands. The copper(II) ions has two different coordination environment.  相似文献   

19.
Single crystals of two cerium complexes, with mixed-ligands oxalate and glycolate, have been prepared in a closed system, at 200 °C for one month: [Ce2(H2O)3](C2O4)2.5(H3C2O3) 1 and Ce2(C2O4)(H3C2O3)42. 1 crystallizes in the orthorhombic system, space group Pbca, with , , and while 2 crystallizes in the tetragonal system, space group P42/nbc, with , . For both complexes, the three-dimensional framework structure is built up by the linkages of the cerium and all the oxygen atoms of oxalate and glycolate ligands. For 2, its structure presents a nice case of two 3D identical sub-lattices, with 2-fold interpenetration. The only link between these two sub-lattices is assumed by strong hydrogen bonds between the hydroxyl function of the glycolate and the oxygen atoms of the oxalate. The schematized framework of 2, including only the cerium atoms, can be compared to that of cooperite (PtS).For 1, the two independent cerium have 9- or 10-fold coordination, forming a distorted monocapped or bicapped square antiprism polyhedron while for 2, the two independent cerium present 8-fold coordination, forming an almost regular dodecahedron. A quite relevant feature of 2 is the complete absence of water. 2 has been extended to other lanthanides (Ln=Ce…Lu, yttrium included) leading to a family, which has been characterized by infra-red and thermal analysis.  相似文献   

20.
Crystals with uncommon composition NaBa6[Co(Edta)]4(ClO4)9 · 30H2O (Edta4− is ethylenediaminetetraacetic acid anion) were obtained with the following unit cell parameters: a = 14.8513(9) Å, b = 26.2361(15) Å, c = 15.1789(9) Å, α = 91.661(7)°, β = 113.035(7)°, γ = 89.897(7)°, space group P1¯. Each complex anion [Co(Edta)] is bonded through the carboxyl O atoms to five Ba atoms to give three-dimensional framework in a crystal. One perchlorate ion forms Ba-O-Cl-O-Ba bridge between the Ba atoms; four ClO 4 ions are isolated, while the remaining four ions act as monodentate ligands at the Ba atoms. The water molecules (25 in sum) complete the coordination sphere of the Ba atoms to eight-, nine-, or ten-vertex polyhedron. Four water molecules are in the closest surrounding of the Na atom, one H2O molecule is isolated.__________Translated from Koordinatsionnaya Khimiya, Vol. 31, No. 8, 2005, pp. 590–595.Original Russian Text Copyright © 2005 by Zabel, Poznyak, Pawlowski.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号