首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The nucleus-acoustic shock waves (NASWs) propagating in a white dwarf plasma system, which contain non-relativistically or ultrarelativistically degenerate electrons, non-relativistically degenerate, viscous fluid of light nuclei, and immobile nuclei of heavy elements, have been theoretically investigated. We have used the reductive perturbation method, which is valid for small but finite-amplitude NASWs to derive the Burgers equation. The NASWs are, in fact, associated with the nucleus-acoustic (NA) waves in which the inertia is provided by the light nuclei, and restoring force is provided by the degenerate pressure of electrons. On the other hand, the stationary heavy nuclei participate only in maintaining the background charge neutrality condition at equilibrium. It is found that the viscous force acting in the fluid of light nuclei is a source of dissipation, and is responsible for the formation of NASWs. It is also observed that the basic features (polarity, amplitude, width, etc.) of the NASWs are significantly modified by the presence of heavy nuclei, and that NASWs are formed with either positive or negative potential depending on the values of the charge density of the heavy nuclei. The basic properties are also found to be significantly modified by the effects of ultrarelativistically degenerate electrons. The implications of our results in white dwarfs are briefly discussed.  相似文献   

2.
A theoretical investigation has been carried out on the propagation of non-linear ion-acoustic shock waves (IASHWs) in a magnetized degenerate quantum plasma system composed of inertial non-relativistic positively charged light and heavy ions, inertialess non-relativistically or ultra-relativistically degenerate electrons and positrons. The reductive perturbation method has been employed to derive the Burgers' equation. It has been observed that under consideration, our plasma model supports only positive potential shock structure. It is also found that the amplitude and steepness of the IASHWs have been significantly modified by the variation of ion kinematic viscosity, oblique angle, number density, and charge state of the plasma species. The results of our present investigation will be helpful for understanding the propagation of IASHWs in white dwarfs and neutron stars.  相似文献   

3.
A nonlinear propagation of cylindrical and spherical modified ion-acoustic (mIA) waves in an unmagnetized, collisionless, relativistic, degenerate multi-species plasma has been investigated theoretically. This plasma system is assumed to contain non-relativistic degenerate light ions, both non-relativistic and ultra-relativistic degenerate electron and positron fluids, and arbitrarily charged static heavy ions. The restoring force is provided by the degenerate pressures of the electrons and positrons, whereas the inertia is provided by the mass of ions. The arbitrarily charged static heavy ions participate only in maintaining the quasi-neutrality condition at equilibrium. The modified Burgers (mB) equation is derived by using reductive perturbation technique and numerically analyzed to identify the basic features of mIA shock structures. The basic characteristics of mIA shock waves are found to be significantly modified by the effects of degenerate pressures of electron, positron, and ion fluids, their number densities, and various charge state of heavy ions. The implications of our results to dense plasmas in astrophysical compact objects (e.g., non-rotating white dwarfs, neutron stars, etc.) are briefly discussed.  相似文献   

4.
The nonlinear propagation of cylindrical and spherical modified ion-acoustic (mIA) waves in an unmagnetized, collisionless, relativistic, degenerate multispecies plasma has been investigated theoretically. This plasma system is assumed to contain both relativistic degenerate electron and positron fluids, nonrelativistic degenerate positive and negative ions, and positively charged static heavy ions. The restoring force is provided by the degenerate pressures of the electrons and positrons, whereas the inertia is provided by the mass of positive and negative ions. The positively charged static heavy ions participate only in maintaining the quasi-neutrality condition at equilibrium. The nonplanar K-dV and mK-dV equations are derived by using reductive perturbation technique and numerically analyzed to identify the basic features (speed, amplitude, width, etc.) of mIA solitary structures. The basic characteristics of mIA solitary waves are found to be significantly modified by the effects of degenerate pressures of electron, positron, and ion fluids, their number densities, and various charge states of heavy ions. The implications of our results to dense plasmas in astrophysical compact objects (e.g., nonrotating white dwarfs, neutron stars, etc.) are briefly mentioned.  相似文献   

5.
By employing the reductive perturbation technique, the propagation of cylindrical and spherical ion acoustic solitary waves is studied in an unmagnetized dense relativistic plasma, consisting of relativistically degenerate electrons and cold fluid ions. A modified Korteweg-de-Vries equation is derived and its numerical solutions have been analyzed to identify the basic features of electrostatic solitary structures that may form in such a degenerate Fermi plasma. Different degrees of relativistic electron degeneracy are discussed and compared. It is found that increasing number density leads to decrease the amplitude the width of the ion acoustic solitary wave in both the cylindrical and spherical geometries. The relevance of the work to the compact astrophysical objects, particularly white dwarfs is pointed out.  相似文献   

6.
In this investigation, the evolution of heavy-and light-nuclei acoustic (HLNA) dressed shock waves (DSWs) due to the contribution of higher order of nonlinearity and dissipation effects has been examined in a degenerate quantum plasma composed of inertial heavy as well as light nuclei and inertia-less ultra-relativistic degenerate electrons. By employing the reductive perturbation method, the nonlinear Burgers equation is derived. Further, an inhomogeneous Burgers-type equation accounting for the higher order contributions of nonlinearity and dissipation is also derived. With the insertion of higher order effects, a new humped type or dressed shock structures are evolved. The influence of different plasma parameters on the dynamical evolution of the HLNA-DSWs is examined. It is observed that these plasma parameters play significant role on the characteristics of HLNA-DSWs and their corresponding electric fields. The findings of present investigation may be applicable to provide a new insight to understand the evolution of HLNA-DSWs in different dense astrophysical regions such as white dwarfs.  相似文献   

7.
M M Hasan  M A Hossen  A Rafat  A A Mamun 《中国物理 B》2016,25(10):105203-105203
A theoretical investigation has been carried out on the propagation of the ion–acoustic(IA) waves in a relativistic degenerate plasma containing relativistic degenerate electron and positron fluids in the presence of inertial non-relativistic light ion fluid. The Korteweg-de Vries(K-dV), modified K-dV(m K-dV), and mixed m K-dV(mm K-dV) equations are derived by adopting the reductive perturbation method. In order to analyze the basic features(phase speed, amplitude, width,etc.) of the IA solitary waves(SWs), the SWs solutions of the K-dV, m K-dV, and mm K-d V are numerically analyzed. It is found that the degenerate pressure, inclusion of the new phenomena like the Fermi temperatures and quantum mechanical effects(arising due to the quantum diffraction) of both electrons and positrons, number densities, etc., of the plasma species remarkably change the basic characteristics of the IA SWs which are found to be formed either with positive or negative potential. The implication of our results in explaining different nonlinear phenomena in astrophysical compact objects, e.g.,white dwarfs, neutron stars, etc., and laboratory plasmas like intense laser–solid matter interaction experiments, etc., are mentioned.  相似文献   

8.
A rigorous theoretical investigation has been made to study the existence and basic features of the ion-acoustic (IA) shock structures in an unmagnetized, collisionless multi-ion plasma system (containing degenerate electron fluids, inertial positively as well as negatively charged ions, and arbitrarily charged static heavy ions). This investigation is valid for both non-relativistic and ultra-relativistic limits. The reductive perturbation technique has been employed to derive the modified Burgers equation. The solution of this equation has been numerically examined to study the basic properties of shock structures. The basic features (speed, amplitude, width, etc.) of these electrostatic shock structures have been briefly discussed. The basic properties of the IA shock waves are found to be significantly modified by the effects of arbitrarily charged static heavy ions and the plasma particle number densities. The implications of our results in space and interstellar compact objects like white dwarfs, neutron stars, black holes, and so on have been briefly discussed.  相似文献   

9.
The basic features and multi-dimensional instability of electrostatic (EA) solitary waves propagating in an ultra-relativistic degenerate dense magnetized plasma (containing inertia-less electrons, inertia-less positrons, and inertial ions) have been theoretically investigated by reductive perturbation method and small-k perturbation expansion technique. The Zakharov-Kuznetsov (ZK) equation has been derived, and its numerical solutions for some special cases have been analyzed to identify the basic features (viz. amplitude, width, instability, etc.) of these electrostatic solitary structures. The implications of our results in some compact astrophysical objects, particularly white dwarfs and neutron stars, are briefly discussed.  相似文献   

10.
The nonlinear propagation of modified electron‐acoustic (mEA) shock waves in an unmagnetized, collisionless, relativistic, degenerate quantum plasma (containing non‐relativistic degenerate inertial cold electrons, both nonrelativistic and ultra‐relativistic degenerate hot electron and inertial positron fluids, and positively charged static ions) has been investigated theoretically. The well‐known Burgers type equation has been derived for both planar and nonplanar geometry by employing the reductive perturbation method. The shock wave solution has also been obtained and numerically analyzed. It has been observed that the mEA shock waves are significantly modified due to the effects of degenerate pressure and other plasma parameters arised in this investigation. The properties of planar Burgers shocks are quite different from those of nonplanar Burgers shocks. The basic features and the underlying physics of shock waves, which are relevant to some astrophysical compact objects (viz. non‐rotating white dwarfs, neutron stars, etc.), are briefly discussed. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
By using the relativistic quantum magnetohydrodynamic model, the extraordinary electromagnetic waves in magnetized quantum plasmas are investigated with the effects of particle dispersion associated with the quantum Bohm potential effects, the electron spin-1/2 effects, and the relativistic degenerate pressure effects. The electrons are treated as a quantum and magnetized species, while the ions are classical ones. The new general dispersion relations are derived and analyzed in some interesting special cases. Quantum effects are shown to affect the dispersion relations of the extraordinary electromagnetic waves. It is also shown that the relativistic degenerate pressure effects significantly modify the dispersive properties of the extraordinary electromagnetic waves. The present investigation should be useful for understanding the collective interactions in dense astrophysical bodies,such as the atmosphere of neutron stars and the interior of massive white dwarfs.  相似文献   

12.
Fully nonlinear propagation of ion-acoustic solitary waves in a collisionless dense/quantum electron–positron–ion plasma is investigated. The electrons and positrons are assumed to follow the Thomas–Fermi density distribution and the ions are described by the hydrodynamic equations. An energy balance-like equation involving a Sagdeev-type pseudo-potential is derived. Finite amplitude solutions are obtained numerically and their characteristics are discussed. The small-but finite-amplitude limit is also considered and an exact analytical solution is obtained. The present studies might be helpful to understand the excitation of nonlinear ion-acoustic solitary waves in a degenerate plasma such as in superdense white dwarfs.  相似文献   

13.
The properties of obliquely propagating ion-acoustic waves have been investigated in multi-ions magnetized plasma comprising of inertial, positively and negatively charged ion fluids, trapped electrons, and negatively charged stationary heavy ions. The propagation of the waves is oblique to the ambient magnetic field which is along the z-direction. Only fast type of modes exists in the linear regime. The reductive perturbation method was adopted to derive the Korteweg– de Vries (KdV) and Burger equations, as well as the solitary and shock wave solutions of the evolved equations, have been used to analyze the properties of the small but finite amplitude waves. The effects of the constituent plasma parameters, namely, the trapping effect of electrons, the electron degenerate temperature and the viscosity coefficient on the dynamics of the small amplitude solitary and shock waves have been examined. The influence of the magnetic field and the obliquity parameter on the propagation characteristics of ion-acoustic waves are discussed.  相似文献   

14.
A self-gravitating degenerate quantum plasma (SGDQP) system containing degenerate electron and light nucleus species along with extremely low-dense heavy-nucleus species is considered. The existence of new degenerate pressure-driven self-gravito-acoustic (DPDSGA) waves in this SGDQP system is found, and their dispersion properties along with stable and unstable parametric regimes are identified. The DPDSGA waves emit from this SGDQP system due to the compression and rarefaction (and vice-versa) of the perturbed state of it. Its compression is due to the inward poll of degenerate electron and light nucleus species by the self-gravitational attractive pressures, whereas its rarefaction is due to the outward degenerate pressures exerted by the degenerate electron and light nucleus species. The DPDSGA waves are new because they completely disappear if the electron and light nucleus degeneracies are neglected. The DPDSGA waves exist in the SGDQP system that occurs in astrophysical compact objects like white dwarfs [H. M. Van Horn, Science 252 , 384 (1991); D. Koester, Astron. Astrophys. Rev. 11 , 33 (2002)].  相似文献   

15.
Head-on collision between two ion acoustic solitary waves in a Thomas-Fermi plasma containing degenerate electrons and positrons is investigated using the extended Poincaré-Lighthill-Kuo (PLK) method. The results show that the phase shifts due to the collision are strongly dependent on the positron-to-electron number density ratio, the electron-to-positron Fermi temperature ratio and the ion-to-electron Fermi temperature ratio. The present study might be helpful to understand the excitation of nonlinear ion-acoustic solitary waves in a degenerate plasma such as in superdense white dwarfs.  相似文献   

16.
In this letter, the propagation characteristics of lower hybrid waves are investigated in electron–ion degenerate plasma with exchange effect considering non-relativistic, relativistic and ultra-relativistic regimes. The combined effect of Bohm force and exchange correlation potential are found to alter the dispersion properties of lower hybrid waves. The analytical and numerical results clearly show the influence of relativistic velocities of electrons, kinetic pressure of ions, Bohm force and exchange correlation potential on the frequency of the lower hybrid wave. The present work find its relevance for the dense astrophysical environments like white dwarfs and for laboratory fusion plasma experiments.  相似文献   

17.
A rigorous theoretical investigation has been conducted on solitary self-gravitational potential structures in a magnetized degenerate quantum plasma system (containing heavy nuclei and degenerate electrons). The reductive perturbation method has been used to derive the Korteweg-de Vries (K-dV) equation, which admits a solitary wave solution for small but finite amplitude limit. It has been shown, for the first time, that the periodic U-shaped structures represented by secant square function [Asaduzzaman et al, Physics of Plasmas, 24 , 052102 (2017)] are converted into solitary self-gravitational potential structures represented by hyperbolic secant square function due to the presence of a static external magnetic field. It is also observed that the effects of the static external magnetic field and obliqueness significantly modify the basic properties (viz. amplitude, width, speed, etc.) of the solitary self-gravitational potential structures.  相似文献   

18.
A general theory for nonlinear propagation of one dimensional modified ion-acoustic waves in an unmagnetized electron-positron-ion (e-p-i) degenerate plasma is investigated. This plasma system is assumed to contain relativistic electron and positron fluids, non-degenerate viscous positive ions, and negatively charged static heavy ions. The modified Burgers and Gardner equations have been derived by employing the reductive perturbation method and analyzed in order to identify the basic features (polarity, width, speed, etc.) of shock and double layer (DL) structures. It is observed that the basic features of these shock and DL structures obtained from this analysis are significantly different from those obtained from the analysis of standard Gardner or Burgers equations. The implications of these results in space and interstellar compact objects (viz. non-rotating white dwarfs, neutron stars, etc.) are also briefly mentioned.  相似文献   

19.
Overtaking collisions of oblique isothermal ion-acoustic multisolitons are studied in an ultra-relativistic degenerate dense magnetoplasma, containing non-degenerate inertial warm ions and ultra-relativistic degenerate inertialess electrons and positrons. A non-linear Korteweg-de Vries (KdV) equation describing oblique isothermal ion-acoustic solitons (OIIASs) in such a plasma model is derived. By applying Hirota's bilinear method (HBM), the overtaking collisions of oblique isothermal ion-acoustic multisoliton solutions are investigated. An in-depth discussion shows that the amplitude, the width, and the phase shift of isothermal ion-acoustic multisolitons increase as the obliqueness and the chemical potential of electrons increase. The deviation of the trajectories decreases with increasing concentration of fermions and the ion cyclotron frequency. The present finding of this study is applicable in compact objects, such as white dwarfs and neutron stars, having degenerate ultra-relativistic dense electrons and positrons.  相似文献   

20.
Non-linear heavy ion-acoustic waves (HIAWs) are studied in a homogeneous magnetized four-component multi-ion plasma composed of inertial heavy negative ions, light positive ions, and inertia-less non-extensive electrons and positrons. The non-linear Schrödinger equation is derived in this model using the perturbation method. The criteria for modulational instability of HIAWs and the basic features of finite-amplitude heavy ion acoustic rogue waves (HIARWs) are investigated. The presence of the magnetic field was found to reduce the amplitude of HIARWs and enhances the stability. It is interesting to note that increasing positive ion mass causes decreases in the amplitude and width of rogue waves, which is opposite behaviour to that demonstrated in the previous study of these waves in an unmagnetized plasma. Furthermore, it is also shown that striking parameters, such as the non-extensive parameter, the positron number density, the electron number density, the electron temperature, and the magnetic field parameter, play an undeniable role on the stability of waves packets. The findings of the present investigation may be of wide relevance to some plasma environments, such as active galactic nuclei, pulsar magnetospheres, and other magnetic confinement systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号