首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated the I-V characteristics of the double barrier stair-well structure. Resonant tunneling current is achieved by application of an electric field, which increases the transmission under positive bias and decreases it under the reverse bias. This asymmetry can be used for rectification and the device works as a quantum diode. Furthermore, the same structure can perform, under negative bias, resonant tunneling processes with different characteristics.  相似文献   

2.
A Schrödinger equation is solved numerically for a barrier in a quantum well and a quantum well in another well structure by the transfer matrix technique. Effect of structure parameters on the transmission probabilities is investigated in detail. The results suggest that symmetry plays an important role in the coupling effect between the quantum wells. The relationship between the width of the inner well and the resonant energy levels in well-in-well structures is also studied. It is found that the ground state energy and the second resonant energy decrease with increasing width of the inner well, while the first resonant energy remains constant.  相似文献   

3.
陈静  蒋震宗  陆加佳  刘永生  朱燕艳 《物理学报》2010,59(12):8862-8869
基于电子在分裂能级系统中同时存在的共振隧穿和子带输运过程,结合光生载流子作用提出了纳米硅结构中的光电输运理论模型.利用该模型计算了纳米硅结构在光照条件下的电流密度、电场强度及电子浓度分布.结果表明,光生电子在具有分裂能级的纳米硅中是以共振隧穿为主要输运方式.在此基础上,详细研究了光电流与吸收系数、外加偏压以及纳米硅层层数之间的关系,发现在特定的外界条件下光电流会出现跳变增加的现象,其物理原因是纳米硅结构中电场强度的二次分布.  相似文献   

4.
Taking exact Airy functions and Hermitian functions as envelope functions, we investigate in detail the level width of a quasibound state for electrons coherent resonant tunneling through symmetric and asymmetric double-barrier parabolic-well resonant tunneling structures (DBRT) with the transfer-matrix formalism. It is found that for the symmetric structure and the asymmetric structure with left barrier thicker than the right one, both the level width and the peak value vary monotonously with increasing applied bias, but for the asymmetric DBRT structure with left barrier thinner than the right one, they change nonmonotonously. The nonmonotonous variations of the level width and the peak value reflect the transition of tunneling type (i.e. first from incompletely resonant tunneling to completely resonant tunneling, and then from completely resonant tunneling back to incompletely resonant tunneling). The effects of well width, barrier thickness and barrier height on the level width and the peak value are also inspected.  相似文献   

5.
M Bati  S Sakiroglu  I Sokmen 《中国物理 B》2016,25(5):57307-057307
A theoretical study of resonant tunneling is carried out for an inverse parabolic double-barrier structure subjected to an external electric field. Tunneling transmission coefficient and density of states are analyzed by using the non-equilibrium Green's function approach based on the finite difference method. It is found that the resonant peak of the transmission coefficient, being unity for a symmetrical case, reduces under the applied electric field and depends strongly on the variation of the structure parameters.  相似文献   

6.
黎明  陈军  宫箭 《物理学报》2014,63(23):237303-237303
在有效质量近似和绝热近似下,利用转移矩阵法研究了电子通过In As/In P/In As/In P/In As柱形量子线共振隧穿二极管的输运问题,分析和讨论了电子居留时间以及电子的逃逸过程.详细研究了外加电场、结构尺寸效应对居留时间和电子逃逸的影响.居留时间随电子纵向能量的演化呈现出共振现象;同时,结构的非对称性对电子居留时间有很大的影响,随着结构非对称性的增加,居留时间表现出不同的变化.利用有限差分方法研究了非对称耦合量子盘中电子的相干隧穿逃逸过程.  相似文献   

7.
谢素霞  李宏建  周昕  徐海清  付少丽 《中国物理 B》2010,19(7):77803-077803
We investigate the relationship between the transmission and the layer distance of double-layer gold slit arrays by using the finite-difference time-domain method.The results show that the transmission properties can be influenced strongly by layer distance.We attribute the two types of resonant modes to surface plasmon resonance and the localised waveguide resonance.We find that the localised waveguide transmission peak redshifts and becomes broader with increasing layer distance D.We also describe and explain the splitting,shift,and degeneration of the surface plasmon resonant transmission peak theoretically.In addition,to clarify the physical mechanism of the transmission behaviours,we analyse the distributions of electric field and total energy for the three transmission peaks with distance D=45 nm for the double-layer system.Light transporting behaviours are mostly concentrated in the region of the slits as well as the interspaces of the two layers,and for different resonant wavelengths the electric field and energy distributions are different.It is expected that the results obtained here will be helpful for designing subwavelength metallic grating devices.  相似文献   

8.
Experimental measurements and theoretical calculations have been used to study the hole transport characteristics in SiGe/Si double and triple barrier resonant tunneling structures. The main emphasis is put on discussing the symmetry of I–V characteristics with forward and reverse bias, their temperature dependences and relations to quantum well designs. The calculations show that at current resonance, the sub-level can be much lower (e.g, for heavy hole resonance) or much higher (e.g, for light hole resonance) than the quasi-Fermi-level in the spacer. The distinctly different features of the measured first and second resonances for SiGe/Si double and triple barrier resonant tunneling, can be understood, by considering the different population of the heavy hole and light hole bands in the spacer region and the temperature dependences of Fermi-level, carrier mobility and effective masses. The analysis of dependences of the transmission and I–V curve with quantum well designs presents the possibility of using an asymmetric triple barrier structure to improve the resonant tunneling performance.  相似文献   

9.
We propose a simple quantum structure which exhibits resonant tunneling under one bias and simple tunneling under the opposite one, thus acting as a rectifier. The diode consists of a single laterally-indented barrier. Due to its particular conduction-band profile, electrons undergo resonant tunneling when the bias creates a band-profile triangular well which can contain a resonant state aligned to the emitter Fermi energy. A diode with an active layer of ≈ 100Å, realized by AlGaAs/GaAs, has a Rectification Ratio, calculated at the current-peak bias at resonance, of ≈ 100. This value can be enhanced by putting in series several elements of this kind.  相似文献   

10.
We initiated the present study to investigate experimentally a fundamental quanturn-mechanical effect—the resonant transmission of electrons through potential barriers in semicon- ductors. The phenomenon of such resonance is a familiar one. In the simple case of a double barrier, the incident electrons are able to tunnel through both barriers without attenuation if their energies coincide with the resonant energies.1 In the caSe of a series of equally spaced barriers, e.g., that of the KronigPenney model of a one-dimensional crystal, the electronic structure exhibits forbidden bands of attenuation that are separated by allowed bands where perfect transmission of electrons would occur.  相似文献   

11.
We study theoretically transport properties of two-dimensional electron gases through antiparallel magnetic-electric barrier structures. Two kinds of magnetic barrier configurations are employed: one is that the strength of the double δ-function in opposite directions is equal and the other is that the strength is unequal. Similarities and differences of electronic transports are presented. It is found that the transmission and the conductance depend strongly on the shape of the magnetic barrier and the height of the electric barrier. The results indicate that this system does not possess any spin filtering and spin polarization and electron gases can realize perfect resonant tunneling and wave-vector filtering properties. Moreover, the strength of the effect of the inhomogeneous magnetic field on the transport properties is discussed.  相似文献   

12.
We report an inelastic electron tunneling spectroscopy study on MgO magnetic junctions with thin barriers (0.85-1.35 nm). Inelastic electron tunneling spectroscopy reveals resonant electronic trapping within the barrier for voltages V>0.15 V. These trapping features are associated with defects in the barrier crystalline structure, as confirmed by high-resolution transmission electron microscopy. Such defects are responsible for resonant tunneling due to energy levels that are formed in the barrier. A model was applied to determine the average location and energy level of the traps, indicating that they are mostly located in the middle of the MgO barrier, in accordance with the high-resolution transmission electron microscopy data and trap-assisted tunneling conductance theory. Evidence of the influence of trapping on the voltage dependence of tunnel magnetoresistance is shown.  相似文献   

13.
电子横向运动对共振隧穿的影响   总被引:2,自引:0,他引:2  
宫箭  班士良 《发光学报》2001,22(1):33-36
讨论了电子横纵方向运动耦合时的隧穿现象,对CdSe/Zn1-xCdxSe方形双势垒结构和抛物形双势垒结构的数值计算表明,在零偏压和非零偏压情况下,电子横向运动对共振隧穿的影响是不容忽略的。  相似文献   

14.
We have investigated resonant tunneling in double barrier heterostructures in which the tunnel barriers have been replaced by short period superlattices, and have shown for the first time quantum well confinement in a single quantum well bounded by superlattices. These results also demonstrate the first utilization of short period binary superlattices as effective tunnel barriers to replace the conventional AlxGa1−xAs barriers. The superlattice structure does not exhibit the asymmetry around zero bias in the electrical characteristics normally observed in the conventional AlxGa1−xAs barrier structures, suggestive of reduced roughness at the inverted interface by superlattice smoothing. The superlattice barrier also exhibits an anomalously low barrier height. The performance of this symmetric superlattice structure is compared with an intentionally constructed asymmetric double barrier superlattice structure, which exhibits pronounced asymmetry in the electrical characteristics. The observed behavior supports the view that resonant enhancement occurs in the quantum well.  相似文献   

15.
《Physics letters. A》1997,226(6):393-397
The effect of an electric field on the electron resonant tunnelling into a double barrier structure is studied. We show for particular field strengths an increase of the tunnelling time which helps us to explain the Stark-ladder localization and to discuss Bloch oscillations and the quenching of luminescence in multiple quantum wells.  相似文献   

16.
We have calculated the potential profile and the electronic levels in resonant tunneling double barrier structures with nanometric lateral dimensions (≤ 500 nm) for various contact doping. At biases for which the box states (laterally confined quantum well) are resonant with the emitter Fermi level, fine structures are expected in the resonant tunneling current. Comparison with I(V) characteristics measured on nanometric GaAs/GaAlAs and GaAs/GaAlAs/InGaAs resonant tunneling diodes shows that our model accounts for the resonance bias voltage and explains the shape of the current peak. The fine structure observed in the current peak provides a spectroscopy of the confined states in the quantum box.  相似文献   

17.
李巧华  张振华  刘新海  邱明  丁开和 《物理学报》2009,58(10):7204-7210
基于分子线耦合到电极的构成特点,采用简化的非对称多势垒连续隧穿模型模拟复合分子器件偏压下的电子隧穿过程,推导电子透射谱的解析表达式,同时计算垒宽、垒距、垒高、电子有效质量和所加偏压等参数与透射系数的关系,结果发现:当电子的能量为某些值时,出现明显的共振隧穿,且透射系数对这些参数的变化非常敏感,这表明可以通过适当的控制方式(如改变复合分子组成、构型等)来修改分子电子器件的输运性质. 关键词: 分子器件 非对称势垒模型 电子透射谱 共振隧穿  相似文献   

18.
通过采用转移矩阵方法求解自旋电子隧穿过程,理论研究了半导体超晶格系统中电子自旋输运的磁电调控行为.结果表明:仅对超晶格系统施以磁调制,隧穿系数将出现自旋分裂,随磁场增强,电导自旋极化率变大且展宽于费米能区;若选取不变磁场情况,同时施以间隔周期电场调制,超晶格的电子极化率将有更为显著地提高.进一步发现,随电场强度的改变,电子自旋输运行为显然存在两个明显不同区域,下自旋电子将在不同调制区域表现为不同的变化趋势.然而,若对周期磁超晶格施加间隔两周期的电调制,自旋电导输运的临界行为消失,电导极化率在高能区的共振峰 关键词: 半导体超晶格 自旋输运 磁电调控  相似文献   

19.
In this paper we study the influence of the magneto-coupling effect between the longitudinal motion component and the transverse Landau orbits of an electron on transmission features in single barrier structures. Within the parabolic conduction-band approach, a modified one-dimensional effective-mass Schr?dinger equation, including the magneto-coupling effect generated from the position-dependent effective mass of the electron, is strictly derived. Numerical calculations for single barrier structures show that the magneto-coupling effect brings about a series of the important changes for the transmission probability, the above-barrier quasi-bound states, and the tunneling time. Through examining the variation of the above-barrier resonant-transmission spectrum with the barrier width and observing the well-defined Lorentzian line-shape of the above-barrier resonant peaks, we convincingly show that the above-barrier resonant transmission in single barrier structures is delivered by the above-barrier quasibound states in the barrier region, just as the below-barrier resonant tunneling in double barrier structures is mediated by the below-barrier quasi-bound states in the well. Furthermore, we come to the conclusion that the magneto-coupling effect brings about not only the splitting of the above-barrier quasi-bound levels but also the striking reduction of the level-width of the quasi-bound states, correspondingly, the substantial increase of the density of the quasi-bound states. We suggest that magneto-coupling effects may be observed by the measurements of the optical absorption spectrum associated with the above-barrier quasi-bound states in the single barrier structures. Received: 26 September 1997 / Revised: 26 November 1997 / Accepted: 15 December 1997  相似文献   

20.
In recent years the application of 2-Dimensional (2D) metallic Photonic-Crystal (PC) structures to high-power microwave devices, such as particle accelerators and gyrotrons, has gained increased interest. In this paper we focus on the effect disorder has on the resonant frequency and peak electric field in the defect site of a 2D PC structure. For disorders up to a maximum of 15% variation in position and radius, we found that disorder applied to the innermost rods surrounding the defect site dominates in determining the peak field and resonant frequency of the structure. We also show that small disorder (∼1%) can lead to an increase in peak field in certain cases due to structure optimization. We find that increasing levels of disorder lead to a decreasing average peak field for all structures. Whereas the mean resonant frequency remains constant for increasing disorder while the standard deviation increases. We then develop an understanding for this behaviour in terms of frequency detuning and mode confinement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号