首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A non-vacuum process for Cu(In,Ga)Se2 (CIGS) thin film solar cells from nanoparticle precursors was described in this work. CIGS nanoparticle precursors was prepared by a low temperature colloidal route by reacting the starting materials (CuI, InI3, GaI3 and Na2Se) in organic solvents, by which fine CIGS nanoparticles of about 15 nm in diameter were obtained. The nanoparticle precursors were then deposited onto Mo/glass substrate by the doctor blade technique. After heat treating the CIGS/Mo/glass layers in Se gas atmosphere, a complete solar cell structure was fabricated by depositing the other layers including CdS buffer layer, ZnO window layer and Al electrodes by conventional methods. The resultant solar cell showed a conversion efficiency of 0.5%.  相似文献   

2.
Thin films of Cu(In,Ga)Se2 were fabricated by evaporation from ternary CuGaSe2 and CuInSe2 compounds for photovoltaic device applications and their properties were investigated. From XRF analysis, the Cu:(In+Ga):Se atomic ratio in all thin films was approximately 1:1:2. The Ga/(In+Ga) atomic ratio in the thin films changed linearly from 0 to 1.0 with increasing the [CGS]/([CGS]+[CIS]) mole ratio in the evaporating materials. However, for thin films prepared at the [CGS]/([CGS]+[CIS]) mole ratio above 0.4, the composition by EPMA analysis was not consistent with that by XRF analysis. The result of EPMA analysis showed that the surface of a thin film was Cu-rich. XRD studies demonstrated that the thin films prepared at the [CGS]/([CGS]+[CIS]) mole ratio under 0.2 had a chalcopyrite Cu(In,Ga)Se2 structure and the preferred orientation to the 112 plane. On the other hand, XRD patterns of the thin films produced at the [CGS]/([CGS]+[CIS]) mole ratio above 0.6 showed the diffraction lines from a chalcopyrite Cu(In,Ga)Se2 and a foreign phase. The separation of a peak was observed near 2θ=27°, indicative the graded Ga concentration in Cu(In,Ga)Se2 thin film.  相似文献   

3.
The quaternary system Cu(In,Ga)Se2 (CIGS) allows the band gap of the semiconductor to be adjusted over a range of 1.04-1.67 eV. Using a non-uniform Ga/In ratio throughout the film thickness, additional fields can be built into p-type CIGS-based solar cells, and some researchers have asserted that these fields can enhance performance. The experimental evidence that grading improves device performance, however, has not been compelling, mostly because the addition of Ga itself improves device performance and hence a consistent separation of the grading benefit has not always been achieved. Numerical modeling tools are used in this contribution to show that (1) there can be a beneficial effect of grading, (2) in standard thickness CIGS cells the benefit is smaller than commonly believed, (3) there is also the strong possibility of reduced rather than of increased device performance, and (4) thin-absorber cells derive more substantial benefit.  相似文献   

4.
利用光致发光(PL)分析快速热退火对Cu(In,Ga)Se2 (CIGS)电池的影响,研究退火对薄膜缺陷的影响。Cu(In,Ga)Se2电池的PL谱中总共有 7个峰,即2个可见波段峰和5个红外波段峰。退火温度较低,可减少薄膜体内缺陷,提高载流子浓度,改善薄膜质量;退火温度过高,则会引起正常格点处元素扩散,元素化学计量比改变,体内缺陷增加,吸收层带隙降低,反而会对CIGS薄膜造成破坏。  相似文献   

5.
李微  赵彦民  刘兴江  敖建平  孙云 《中国物理 B》2011,20(6):68102-068102
Mo thin films are deposited on soda lime glass (SLG) substrates using DC magnetron sputtering. The Mo film thicknesses are varied from 0.08 μm to 1.5 μm to gain a better understanding of the growth process of the film. The residual stresses and the structural properties of these films are investigated, with attention paid particularly to the film thickness dependence of these properties. Residual stress decreases and yields a typical tensile-to-compressive stress transition with the increase of film thickness at the first stages of film growth. The stress tends to be stable with the further increase of film thickness. Using the Mo film with an optimum thickness of 1 μm as the back contact, the Cu(InGa)Se2 solar cell can reach a conversion efficiency of 13.15%.  相似文献   

6.
刘芳芳  何青  周志强  孙云 《物理学报》2014,63(6):67203-067203
Cu元素成分对Cu(In,Ga)Se2(简称CIGS)薄膜材料的电学性质及其电池器件性能有很重要的影响.本文利用蒸发法制备了贫Cu和富Cu的CIGS吸收层(0.7Cu/(Ga+In)1.15)及相应的电池器件.扫描电镜和Hall测试发现,富Cu材料的结构特性(晶粒大、结晶状态好)和电学特性(电阻率低、迁移率高等)优于贫Cu材料,而性能测试表明贫Cu器件的效率优于富Cu器件.变温性能测试分析表明,贫Cu器件的主要复合路径是体复合,激活能与CIGS禁带宽度相当;富Cu器件的主要复合路径是界面复合,其激活能远小于CIGS禁带宽度,这大大降低了开路电压Voc,从而降低了电池效率.最后利用蒸发三步法制备了体材料稍富Cu表面贫Cu的CIGS吸收层,降低了短路电流和开路电压的损失,获得了超过15%的电池效率.  相似文献   

7.
CuIn1-xGaxSe2 (CIGSe) nanoparticles were synthesized via a sonochemical method at different Ga content (x?=?0.15, 0.30 and 0.45) and dispersed in a low toxic isobutanol to form the nanoparticle-ink. Thin films of CIGSe were grown by a facile, non-vacuum and inexpensive “nanoparticle-ink based air-spray coating” method. Effects of Ga-content and annealing time on the physical properties of CIGSe thin films were investigated. The elemental composition, crystalline structure, surface morphology and optical properties of the films were explored by various characterization methods. XRD studies of as-synthesized films showed a tetragonal structure with (112) orientation. After annealing, the CIGSe films showed an improvement in the intensity ratio of I(220)/I(112) for the annealing time of 60?min. The morphological studies of annealed CIGSe films showed plank-like larger grains of size ~1–2?µm. The films deposited at different gallium content, x?=?0.15, 0.30 and 0.45 showed PL peak maxima at 954, 1049 and 1168?nm, respectively. The present method is capable of producing CIGSe absorbers by a greener route in large scales at lower cost.  相似文献   

8.
Bulk Bi2NiMnO6 has been shown to be ferromagnetic and ferroelectric. Here, we report a systematic study of the influence of the deposition conditions on the growth of (Bi0.9La0.1)2NiMnO6 thin films onto (0 0 1) SrTiO3 substrates by pulsed laser deposition. Oxygen pressure and substrate temperature have been varied from 0.3 to 0.6 mbar and 600 to 660 °C, respectively. Whereas it is found that single-phase and epitaxial films can be obtained in a relatively broad oxygen pressure range, the temperature window, centred on 620 °C, is extremely narrow. Films of low roughness, about 1 unit cell, have been obtained. It is found that the magnetisation of the films, which are ferromagnetic with Curie temperatures about 100 K, is lower than the expected theoretical value, which might be attributed to an incomplete Ni-O-Mn long-range ordering.  相似文献   

9.
刘芳芳  孙云  何青 《物理学报》2014,63(4):47201-047201
传统制备Cu(In,Ga)Se2(CIGS)手段之一是共蒸发三步法,工艺中通过Cu,In,Ga,Se 4种元素相互扩散、作用形成抛物线形的Ga梯度分布.本文通过调整Ga源温度制备了Ga梯度分布不同的CIGS薄膜及电池.利用多种测试方法,研究了Ga梯度分布不同对CIGS薄膜表面及背面结构性质及电性质的影响,计算分析了表面导带失调值及背面电场对电池性能的影响,从而获得了合适的Ga梯度分布,提高了电池光谱相应,获得了较好的电池性能参数.  相似文献   

10.
分别在苏打石灰玻璃、Mo箔、无择优取向的Mo薄膜以及(110)择优取向的Mo薄膜四种不同衬底上,采用共蒸发工艺沉积约2 μm厚的Cu(In,Ga)Se2薄膜,用X射线衍射仪测量薄膜的织构,研究衬底对Cu(In,Ga)Se2薄膜织构的影响.在以上四种衬底上沉积的Cu(In,Ga)Se2薄膜的(112)衍射峰强度依次逐渐减弱,(220/204)衍射峰从无到有且强度逐渐增强.在苏打石灰玻璃和Mo箔衬底上的Cu(In,Ga)Se2关键词: 择优取向 Cu(In 2薄膜')" href="#">Ga)Se2薄膜 太阳电池  相似文献   

11.
刘芳芳  张力  何青 《物理学报》2013,62(7):77201-077201
CIGS薄膜的结晶相是制备高质量薄膜的关键问题. 本文采用共蒸发"三步法"工艺沉积Gu(In, Ga)Se2 (CIGS) 薄膜, 通过X射线衍射仪 (XRD) 和X射线荧光光谱仪 (XRF)、扫描电镜 (SEM) 结合的方法详细研究了"三步法"工艺的相变过程, 并制备出转换效率超过15% 的 CIGS 薄膜太阳电池. 关键词: CIGS薄膜 共蒸发三步法 相变过程  相似文献   

12.
Sn-based thin films as new buffer layer for Cd-free Cu(In,Ga)Se2 (CIGS) solar cells were developed. The Sn(O,S)2 films were formed on CIGS substrates by chemical bath deposition from an alkaline ammonia solution by reacting tin(IV) chloride with thiourea. Optimization of the growth process allowed the smooth and conformal coverage of the films on the CIGS substrates with a thickness of 20 nm that was a self-limited thickness in the chemical bath deposition process. XPS analysis revealed that the as-deposited films contained Sn–O, Sn–OH, and Sn–S bondings and the ratio of Sn–S bonding to Sn–O bonding was 0.3. The CIGS solar cell fabricated with a 20-nm thick Sn(O,S)2 buffer layer had the best efficiency of 11.5% without AR coating. The open circuit voltage, short circuit current, and fill factor were 0.55 V, 34.4 mA/cm2, and FF = 0.61, respectively. The open circuit voltage and fill factor were low compared to the conventional CIGS solar cell with a 50-nm thick CdS buffer due to too thin Sn(O,S)2 buffer layer.  相似文献   

13.
In this study, Cu(In,Ga)(Se,S)2 (CIGSS) thin films were deposited onto a bi-layer Mo coated soda-lime glass by co-sputtering a chalcopyrite Cu(In,Ga)Se2 (CIGS) quaternary alloy target and an In2S3 binary target. A one-stage annealing process was performed to form CIGSS chalcopyrite phase without post-selenization. Experimental results show that CIGSS films were prepared by the proposed co-sputter process via CIGS (70 W by radio frequency) and In2S3 (30 W by direct current) with a substrate temperature of 373 K, working pressure of 0.67 Pa, and one-stage annealing at 798 K for 30 min. The stoichiometry ratios of the CIGSS film were Cu/(In + Ga) = 0.92, Ga/(In + Ga) = 0.26, and Se/(S) = 0.49 that approached device-quality stoichiometry ratio (Cu/(In + Ga) < 0.95, Ga/(In + Ga) < 0.3, and (Se/S) ≈ 0.5). The resistivity of the sample was 14.8 Ω cm, with a carrier concentration of 3.4 × 1017 cm−3 and mobility of 1.2 cm2 V−1 s−1. The resulting film exhibited p-type conductivity with a double graded band-gap structure.  相似文献   

14.
韩安军  孙云*  李志国  李博研  何静靖  张毅  刘玮 《物理学报》2013,62(4):48401-048401
衬底温度保持恒定, 在Se气氛下按照一定的元素配比顺序蒸发Ga, In, Cu制备厚度约为0.7 μrm的Cu(In0.7Ga0.3)Se2 (CIGS)薄膜. 利用X射线衍射仪分析薄膜的晶体结构及物相组成, 扫描电子显微镜表征薄膜形貌及结晶质量, 二次离子质谱仪测试薄膜内部元素分布, 拉曼散射谱 分析薄膜表面构成, 带积分球附件的分光光度计测量薄膜光学性能. 研究发现在Ga-In-Se预制层内, In主要通过晶界扩散引起Ga/(Ga+In)分布均匀化. 衬底温度高于450 ℃时, 薄膜呈现单一的Cu(In0.7Ga0.3)Se2相; 低于400℃, 薄膜存在严重的Ga的两相分离现象, 且高含Ga相主要存在于薄膜的上下表面; 低于300 ℃, 薄膜结晶质量进一步恶化. 薄膜表层的高含Ga相Cu(In0.5Ga0.5)Se2以小晶粒形式均匀分布于薄膜表面, 增加了薄膜的粗糙度, 在电池内形成陷光结构, 提高了超薄电池对光的吸收. 加上带隙值较小的低含Ga相的存在, 使电池短路电流密度得到较大改善. 衬底温度在550 ℃–350 ℃变化时, 短路电流密度JSC是影响超薄电池转换效率的主要因素; 而衬底温度Tsub低于300 ℃时, 开路电压VOC和填充因子FF降低已成为电池性能减退的主要原因. Tsub为350 ℃时制备的0.7 μm左右的超薄CIGS电池转换效率达到了10.3%. 关键词: 2薄膜')" href="#">Cu(In,Ga)Se2薄膜 衬底温度 超薄 太阳电池  相似文献   

15.
Superstrate-type Cu(In,Ga)Se2 (CIGS) thin film solar cells were fabricated using Zn1−xMgxO buffer layers. Due to the diffusion of Cd into CIGS during the growth of the CIGS layer, the conventional buffer material of CdS is not suitable. ZnO is a good candidate because of higher thermal tolerance but the conduction band offset (CBO) of ZnO/CIGS is not appropriate. In this study, the Zn1−xMgxO buffer layers were used to fulfill both the requirements. The superstrate-type solar cells with a soda-lime glass/In2O3:Sn/Zn1−xMgxO/CIGS/Au structure were fabricated with different band gap energies of the Zn1−xMgxO layer. The CIGS layers [Ga/(In + Ga)∼0.25] were deposited by co-evaporation method. The substrate temperature during the CIGS deposition of 450 °C did not cause the intermixing of the Zn1−xMgxO and CIGS layers. The conversion efficiency of the cell with Zn1−xMgxO was higher than that with ZnO due to the improvement of open-circuit voltage and shunt resistance. The results well corresponded to the behavior of the adjustment of CBO, demonstrating that the usefulness of the Zn1−xMgxO layer for the CBO control in the superstrate-type CIGS solar cells.  相似文献   

16.
采用连续离子层吸附与反应方法在玻璃基板上按照不同[Cu]/[In]的比例制备了CuInS2薄膜,并在400 °C退火30 min. 对薄膜的晶体结构和晶粒尺寸用X射线衍射方法进行了表征,原子力显微镜测定薄膜的表面形貌. 研究不同的[Cu]/[In]比例对薄膜光学和电学性能的影响. 采用直流两探针法在300~470 °C测定CuInS2薄膜的电阻率,随着[Cu]/[In]比例的增加,电阻率值越来越低. 溶液中[Cu]/[In]的比例明显影响CuInS2薄膜的结构、电学和光学特性.  相似文献   

17.
FeSe0.5Te0.5 thin films with PbO-type structure are successfully grown on MgO(1 0 0) and LaSrAlO4(0 0 1) substrates from FeSe0.5Te0.5 or FeSe0.5Te0.75 polycrystalline targets by pulsed-laser deposition. The film deposited on the MgO substrate (film thickness ∼ 55 nm) shows superconductivity at 10.6 K (onset) and 9.2 K (zero resistivity). On the other hand, the film deposited on the LaSrAlO4 substrate (film thickness ∼ 250 nm) exhibits superconductivity at 5.4 K (onset) and 2.7 K (zero resistivity). This suggests the strong influence of substrate materials and/or the c-axis length to superconducting properties of FeSe0.5Te0.5 thin films.  相似文献   

18.
Ba(Zr0.20Ti0.80)O3 (BZT) thin films are deposited on Pt(1 1 1)/Ti/SiO2/Si, MgO and ZrO2 buffered Pt(1 1 1)/Ti/SiO2/Si substrates by a sol-gel process. The BZT thin films directly grown on Pt(1 1 1)/Ti/SiO2/Si substrates exhibit highly (1 1 1) preferred orientation, while the films deposited on Pt(1 1 1)/Ti/SiO2/Si substrates with MgO and ZrO2 buffer layers show highly (1 1 0) preferred orientation. At 100 kHz, dielectric constants are 417, 311 and 321 for the BZT thin films grown on Pt(1 1 1)/Ti/SiO2/Si, MgO and ZrO2 buffered Pt(1 1 1)/Ti/SiO2/Si substrates, respectively. The difference in dielectric properties of three BZT films can be attributed to the series capacitance effect, interface conditions and their orientations.  相似文献   

19.
Silver antimony selenide (AgSbSe2) thin films were prepared by heating sequentially deposited multilayers of antimony sulphide (Sb2S3), silver selenide (Ag2Se), selenium (Se) and silver (Ag). Sb2S3 thin film was prepared from a chemical bath containing SbCl3 and Na2S2O3, Ag2Se from a solution containing AgNO3 and Na2SeSO3 and Se thin films from an acidified solution of Na2SeSO3, at room temperature on glass substrates. Ag thin film was deposited by thermal evaporation. The annealing temperature was 350 °C in vacuum (10−3 Torr) for 1 h. X-ray diffraction analysis showed that the thin films formed were polycrystalline AgSbSe2 or AgSb(S,Se)2 depending on selenium content in the precursor films. Morphology and elemental analysis of these films were done using scanning electron microscopy and energy dispersive X-ray spectroscopy. Optical band gap was evaluated from the UV-visible absorption spectra of these films. Electrical characterizations were done using Hall effect and photocurrent measurements. A photovoltaic structure: glass/ITO/CdS/AgSbSe2/Al was formed, in which CdS was deposited by chemical bath deposition. J-V characteristics of this structure showed Voc = 435 mV and Jsc = 0.08 mA/cm2 under illumination using a tungsten halogen lamp. Preparation of a photovoltaic structure using AgSbSe2 as an absorber material by a non-toxic selenization process is achieved.  相似文献   

20.
(Cu, C)–Ba–O thin films have been deposited at low growth temperature of 450–570 °C by pulsed laser deposition method. A control of CO2 gas pressure and the growth temperature, usage of BaCuyOx pellet target resulted in an expansion of twice c-axis length of BaCuO2 structure (2c phase) and a significant rise of conductivity. Measurements of in-situ XPS suggest that the 2c phase should be (Cu, C)Ba2CuOx [(Cu, C)-1201]. The maximum temperature of onset of the superconducting transition and zero resistance state obtained so far were 60 and 47 K, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号