首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electronic structure and magnetic properties of the PtZrTiAl, PdZrTiAl and Pt0.5Pd0.5ZrTiAl Heusler alloys were investigated using the full-potential linearized augmented plane wave (FPLAPW) within the generalized gradient approximation (GGA). For the PtZrTiAl, and PdZrTiAl alloys, the results showed that these Heusler alloys were stable in the Type I structure. The (Pt, Pd)ZrTiAl Heusler alloys are found to exhibit half-metallic ferromagnetism for both the Type I and Type II structure. The total magnetic moments of the PtZrTiAl and PdZrTiAl alloys were obtained to be 3 μB per formula unit, which are in agreement with the Slater-Pauling rule mtot = (Nv ? 18). The half-metalliciy characteristic exists in the relatively wide ranges of 6.06–6.78 Å, and 6.13–6.73 Å for the PtZrTiAl and PdZrTiAl alloys, respectively. To complete the fundamental characteristics of these alloys, Pt0.5Pd0.5ZrTiAl is predicted to be a half-metallic ferromagnet with an energy gap of 0.90 eV in the minority spin and a complete spin polarization at the Fermi level. These new Heusler alloys may become ideal candidate material for future spintronic applications.  相似文献   

2.
The first-principle calculations within density functional theory are used to investigate the electronic structure and magnetism of the Mn2ZnGe Heusler alloy with CuHg2Ti-type structure. The half-metallic ferrimagnets (HMFs) in Mn2ZnGe are predicted. The energy gap lies in the minority-spin band for the Mn2ZnGe alloy. The calculated total spin magnetic moment is −2μB per unit cell for Mn2ZnGe alloy, the magnetic moments of Zn and Mn(B) are antiparallel to that of Mn(A), and we also found that the half-metallic properties of Mn2ZnGe are insensitive to the dependence of lattice within the wide range of 5.69 and 5.80 Å where exhibiting perfect 100% spin polarization at the Fermi energy.  相似文献   

3.
First-principles density functional theory approach is adopted to determine the electronic, magnetic and structural characteristics of the Mn2CoAs1xAlx (x = 0,0.25,0.50,0.75) Heusler alloys. The computations are carried out by WIEN2k code based on full-potential linearized augmented plane wave method (FP-LAPW). Moreover, the exchange-correlation energy functional is treated at the level of the generalized gradient approximation (GGA). Analysis of our computed results of the electronic band structure, as well as the density of states of the Mn2CoAs compound, show it a stable and half-metallic material with an energy band gap value of 0.48 eV. The calculated spin gap values are: 0.627 eV, 0.22 eV and 0.188 eV for Mn2CoAs0.75Al0.25, Mn2CoAs0.50Al0.50 and Mn2CoAs0.25Al0.75 respectively. Furthermore, the calculated total magnetic moment of the Mn2CoAs (4 µB) is found to be in agreement with the Slater–Pauling rule. Thus, our calculations show the Mn2CoAs1xAlx (x = 0, 0.25, 0.50, 0.75) Heusler alloys potential materials for near future applications in spintronic because of their half-metallic ferromagnetism property.  相似文献   

4.
The electronic structure of the Co2-xZrSn Heusler alloys has been studied by X-ray photoelectron spectroscopy (XPS). XPS valence band spectra can be compared with ab initio electronic structure calculations using the linearized muffin-tin orbital (LMTO) method. The calculated magnetic moments per Co atom agree well with the moments obtained from experiment. The LMTO calculations also show the energy shifts of the Co, Zr and Sn valence electron states towards the Fermi level when the concentration of vacancies increases in these alloys. Received 9 March 1999 and Received in final form 6 May 1999  相似文献   

5.
The half-metallic properties of novel CuHg2Ti-type Mn2ZnSi full-Heusler compound were examined by density functional theory (DFT) calculations. The electronic band structures and density of states of the Mn2ZnSi compound show that spin-up electrons are metallic, but the spin-down bands are semiconductor with a gap of 0.48 eV, and the spin-flip gap is of 0.28 eV. The Mn2ZnSi Heusler compound has a magnetic moment of 2 μB at the equilibrium lattice constant a = 5.80 Å. The Mn2ZnSi full-Heusler compound is ferrimagnetic and maintains the half-metallic character having 100% polarization for lattice constants ranging between 5.62 and 6.91 Å.  相似文献   

6.
The Heusler compound Mn3Si, the antiferromagnet in the Mn-based class of Heuslers which contains several conventional and half-metallic ferromagnet, shows a peculiar stability of its magnetic order in high magnetic fields. We investigated the electronic and magnetic properties of Mn3Si by band structure calculations based on the density functional theory. The minority bands of Mn3Si in the spin polarized state are gapped at the Fermi level, which shows a half-metallic behavior of Mn3Si.  相似文献   

7.
本文计算了Heusler合金Li2AlGa和Li2AlIn的晶格参数、体积模量、体积模量的一阶导数、 电子能带结构、声子色散曲线和声子态密度,并与密度泛函理论中的广义梯度近似计算结果进行比较. 计算的晶格参数与文献有很好的一致性. 两个Heusler合金的电子能带结构表明它们是半金属结构. 并利用声子色散曲线和声子密度图研究Heusler合金晶格动力学. Li2AlGa和Li2AlIn Heusler合金在基态呈现动力学稳定.  相似文献   

8.
罗礼进  仲崇贵  方靖淮  赵永林  周朋霞  江学范 《物理学报》2011,60(12):127502-127502
运用基于密度泛函理论的第一性原理的投影缀加波方法,对Hg2CuTi型Mn2NiAl在由立方结构至四方结构的畸变过程中电子结构和磁性的变化规律及其对压力响应的规律进行了研究.研究发现:在由奥氏体相到马氏体相的相变中,由于Ni-Mn(A)原子间距的减小而使得杂化程度增强,导致占据态的态密度向低能区域移动,体系的能量降低,致使在马氏体相中的稳定性增大;在从奥氏体相到马氏体相的相变中,能带变宽,成键作用加强,从而在马氏体相中的稳定性增大;在四方畸变过程中,总磁矩的变化主要来源于Ni原子磁矩的变化;计算得到Mn2NiAl的零压体积弹性模量为125.69 GPa,其抗压缩性比其他常见的Heusler型合金弱. 关键词: 第一性原理 电子结构 磁性 四方畸变  相似文献   

9.
Half-metallic ferromagnetic full-Heusler alloys containing Co and Mn, having the formula Co2MnZ where Z is a sp element, are among the most studied Heusler alloys due to their stable ferromagnetism and the high Curie temperatures which they present. Using state-of-the-art electronic structure calculations we show that when Mn atoms migrate to sites occupied in the perfect alloys by Co, these Mn atoms have spin moments antiparallel to the other transition metal atoms. The ferrimagnetic compounds, which result from this procedure, keep the half-metallic character of the parent compounds and the large exchange-splitting of the Mn impurities atoms only marginally affects the width of the gap in the minority-spin band. The case of [Co1−xMnx]2MnSi is of particular interest since Mn3Si is known to crystallize in the Heusler L21 lattice structure of Co2MnZ compounds. Robust half-metallic ferrimagnets are highly desirable for realistic applications since they lead to smaller energy losses due to the lower external magnetic fields created with respect to their ferromagnetic counterparts.  相似文献   

10.
In the paper Ab initio electronic structure calculations are applied to study the electronic structure and magnetism properties of a new Mn-based Heusler alloy Mn2CuMg. We take into account both possible L 21 structures (CuHg2Ti and AlCu2Mn types). The CuHg2Ti-type structure is found to be energetically more favorable than the AlCu2Mn-type structure and presents half-metallic ferrimagnetism. However, the case of exchanging X with Y atoms in generic formula loses its half-metallicity due to the symmetric surroundings. Calculations show that their total spin moment is −1μB for a wide range of equilibrium lattice constants and the total spin magnetic moment is attributed mainly to the two Mn atoms, while the Cu atom is almost non-magnetic. A small total spin moment origins from the antiparallel configurations of the Mn partial moments. The CuHg2Ti-type Mn2CuMg alloy keeps a 100% of spin polarization of conduction electrons at the Fermi level, thus opening the way to engineer new half-metallic alloys with the desired magnetic properties.  相似文献   

11.
The results of examination of the structural, magnetic, electronic, and thermodynamic properties of Pd2MnZ (Z = Ga, Ge, As) Heusler alloys obtained in ab initio and Monte Carlo modeling are presented. It is demonstrated that a stable martensitic state is possible for Pd2MnGa and Pd2MnAs alloys. The equilibrium lattice parameter increases in the considered series of alloys with the number of valence electrons per atom (e/a). The Curie temperature of Pd2MnZ (Z = Ga, Ge, As) alloys is determined using the calculated parameters of exchange interaction and total magnetic moments.  相似文献   

12.
ABSTRACT

The inverse Heusler alloys such as Ti2CoSi, Mn2CoAl and Cr2ZnSi were studied in the framework of density functional theory using FP-LAPW linearised augmented plane wave method in order to determine the different physical properties such as structural, electronic, magnetic and thermoelectric. The generalised gradient approximation (GGA) was used to treat the exchange–correlation energy and the Beck-Johnson (mBJ) approach was used to calculate the electronic properties. In all studied compounds, the stable type Hg2CuTi was energetically more favourable than Cu2MnAl type structure. The results show that two compounds (Ti2CoSi and Mn2CoAl) are both ferromagnetic (FM) while Cr2ZnSi is antiferromagnetic (AFM). The compounds Ti2CoSi and Mn2CoAl have a total magnetic moment of 3 and 2?μB, respectively, whereas the Cr2ZnSi alloy has a total magnetic moment equals zero. The Ti2CoSi, Mn2CoAl and Cr2ZnSi compounds exhibit half-metallic (HM) character with 100% spin polarisation at the Fermi level. Finally, the semi-classical Boltzmann theory implicit in the BoltzTraP code was used to calculate the electronic transport coefficients such as thermal and electrical conductivity, the Seebeck coefficient and the factor of merit.  相似文献   

13.
We study magnetism properties and the electronic structure of a new Mn-based Heusler alloys Mn2CuGe using ab initio electronic structure calculations. We take into account both possible L 21 structures (CuHg2Ti and AlCu2Mn types). The CuHg2Ti-type structure is found to be energetically more favorable than the AlCu2Mn-type structure and exhibits half-metallic ferrimagnetism. Calculations show that their total spin moment is for a wide range of equilibrium lattice constants and magnetic moment mainly comes from the two Mn atoms, while the Cu atom is almost nonmagnetic. The small total moment comes from the antiparallel configurations of the Mn partial moments. And the CuHg2Ti-type Mn2CuGe alloy keeps a 100% of spin polarization at the Fermi level. Thus, the Mn2CuGe is the compound of choice for further experimental investigations.  相似文献   

14.
New mixed Heusler alloys of the system Cu2(Mn1?xNix)Sn were prepared with x = 0–1. Magnetic measurements in the ferromagnetic region were undertaken. For manganese, the only atom displaying a magnetic moment in this row of Heusler alloys, 4μB was found, deviations were due to the degree of order. Measurements in the paramagnetic region were not possible because of phase transitions on heating leading to polyphase samples. The critical concentration of magnetic ions was estimated to 13 at.% and compared with models given by Duff and Cannella [6]. With the same plot the Curie point for Cu2MnSn could be determined (630 K).  相似文献   

15.
ABSTRACT

The structural, electronic and magnetic properties of Fe3?xNixSi alloys with variable iron composition (0?≤?x?≤?1) have been investigated within by using Projector augmented wave (PAW) method. The exchange–correlation potential was treated with the generalised gradient approximation (GGA) for the calculation of the structural properties and for the computation of the electronic and magnetic properties in order to treat the d states. These alloys crystallize in cubic Heusler structures; The Fe3Si and Fe2NiSi have a regular structure DO3 and L21 respectively. To describe the experimental proprieties we use the on-site Coulomb interactions of Ueff(Ni)?=?3.1?eV and Ueff(Fe)?=?3.4?eV. A good agreement between calculated and experimental magnetic moments is found for the cubic Heusler phases without the addition of Hubbard-model. The obtained results of the density of states and the spin-polarized band structure show that the Fe2NiSi alloy has half-metallic property. Through the obtained values of the total spin magnetic moment, we conclude that in general, the Fe2NiSi alloy is half-metallic ferromagnet material whereas the Fe3Si alloy has a metallic nature.  相似文献   

16.
The spin-polarized electronic band structures, density of states (DOS), and magnetic properties of Co-Mn-based Heusler alloys CoMnSb and Co2MnSb have been studied by first-principles method. The calculations were performed by using the full-potential linearized augmented plane wave (FP-LAPW) within the spin-polarized density functional theory and generalized gradient approximation (GGA). Calculated electronic band structures and the density of states are discussed in terms of the contribution of Co 3d74s2, Mn 3d54s2, and Sb 5s25p3 partial density of states and the spin magnetic moments were also calculated. The results reveal that both CoMnSb and Co2MnSb have stable ferromagnetic ground state. They are ideal half-metallic (HM) ferromagnet at their equilibrium lattice constants. The calculated total spin magnetic moments are 3μB for CoMnSb and 6μB for Co2MnSb per unit cell, which agree with the Slater-Pauling rule quite well.  相似文献   

17.
DFT-based structural optimisations of Fe2NiZ (Z?=?Al, Ga, Si, Ge) Heusler compounds confirm the stability of these alloys in F-43m phase. While defining the electronic structure, onsite Hubbard approximation scheme for exchange correlations predicted better results than the generalised gradient approximation. Calculated band structure and densities of states together with spin magnetic moments designate the half-metallic character of these alloys. Indirect band gaps, 1.2?eV for Fe2NiAl, 0.98?eV for Fe2NiGa, 1.3?eV for Fe2NiSi and 1.1?eV for Fe2NiGe in spin-down states are observed. The ferromagnetic spin moments amount to an integral value of 5μB for (Al, Ga) and 6μB for (Si, Ge) systems with a maximum contribution from transition metal atom (Fe). To forecast the possible turnout of the thermopower, Seebeck coefficients, electrical and thermal conductivities are calculated, which directly hints the thermoelectric response of these materials. This study creates a possibility of these alloys in thermoelectrics and spintronics.  相似文献   

18.
《Physics letters. A》2020,384(24):126453
In this article, we study the exchange coupling interactions of the equiatomic quaternary Heusler alloy CoFeTiSn, using the two methods: Monte Carlo simulations and the ab-initio method. In a first step, we use the ab-initio calculations to investigate the structural, the electronic and the magnetic properties of this alloy under the GGA method. The analysis of the energy dependence on the lattice parameter a (Å) of the equiatomic quaternary Heusler alloy CoFeTiSn, is discussed for different atomic configurations. The ferromagnetic configuration is found to be the more stable one, with an optimal lattice parameter value 6.00 Å. On the other hand, the electronic structure results show that the compound CoFeTiSn exhibits a half-metallic character and a spin polarization of 100% at the Fermi-level. The total magnetic moment of this alloy is found to be equal to 2.00 μB which follows the Slater Pauling rule. Our results support the half-metallic behavior of the studied material. In order to complete this study, we reported the dependence of the critical transition temperature as a function of the parameter α of the equiatomic quaternary Heusler alloy CoFeTiSn. We showed that the critical temperature increases almost linearly with an increase of the values of the parameter α.  相似文献   

19.
The origin of the Slater–Pauling curve Mt=Zt−28 (Here Mt is the total spin moment and Zt is the number of valence electrons) in half-metallic Heusler alloys Mn2CuZ (Z=Ge and Sb) has been studied in detail. In Mn2CuZ the half-metallic gap has a similar origin like half-Heusler alloys. The Cu atom acts as an electron “donator” in Mn2CuZ, which contributes five d-electrons to the minority spin band of Mn2CuZ. So there are 14 valence electrons in the minority band of Mn2CuZ below the Fermi level. This is the origin of the SP curve Mt=Zt–28. Finally, it is found that, by partial doping of Cu to the vacant site of half-metallic half-Heusler alloys, the magnetic moments of these can be tuned without destroying the half-metallicity. This can be a possible way to design new half-metals.  相似文献   

20.
本文基于第一性原理,通过对反Heusler合金Ti_2RuSn的Y位进行Fe元素掺杂,来探究其掺杂前后的相关特性及掺杂机理,以便寻求半金属性更稳定的Heusler合金材料,为后续相关理论研究及实验提供一定参考.在掺杂过程中随着Fe元素掺杂浓度的增加,反Heusler合金Ti_2RuSn的半金属性并未受到破坏,其带隙反而随掺杂浓度逐渐变宽,从未掺前的0.451 eV展宽到了全掺杂的0.711 eV.为分析掺杂体系的稳定性,我们计算了它们相对于理想反Heusler合金Ti_2RuSn块体的形成能,结果表明,对反Heusler合金Ti_2RuSn的Y位进行Fe元素掺杂可以展宽其带隙,并且掺杂浓度越低,体系相对较容易形成.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号