首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two layered magnetic Bethe lattice with varying coordination number q is introduced and numerically studied via exact recursion relations within a pairwise approach. The system is influenced by competing interlayer and intralayer nearest-neighbour (NN) coupling interactions and also by the crystal and external magnetic fields. Cases where both layers are ferromagnetic or one is ferro and the other antiferromagnetic are considered. System configurations’ energy calculations are used to devise some ground state phase diagrams that have proven useful for the investigation of the very low temperature behaviour of the model. Analysis of the thermal behaviours of the total magnetization within the model parameters’ space yield interesting phase diagrams which display fascinating properties, in particular the presence of tricritical points. Increasing negative values of the crystal field strength stabilizes the disordered paramagnetic phase and sometimes gives rise to wavy transition lines.  相似文献   

2.
The magnetization of a cylindrical Ising nano-tube is investigated by the use of the effective field theory with correlations. The effects of the crystal field couplings at the surface shell to the order parameters, susceptibility, internal energy, specific heat and free energy are investigated. Some characteristic phenomena are examined in the thermal variations, depending on crystal field term. Moreover, tricritical and critical points are found on the (D/J,kT/J) plane, where D/J and kT/J are reduced crystal-field and temperature, respectively.  相似文献   

3.
The Ising model with quenched random magnetic fields is examined for single Gaussian, bimodal and double Gaussian random field distributions by introducing an effective field approximation that takes into account the correlations between different spins that emerge when expanding the identities. Random field distribution shape dependence of the phase diagrams, magnetization and internal energy is investigated for a honeycomb lattice with a coordination number q=3. The conditions for the occurrence of reentrant behavior and tricritical points on the system are also discussed in detail.  相似文献   

4.
The nature (time variation) of response magnetization m(wt) of the spin-1 Blume-Capel model in the presence of a periodically varying external magnetic field h(wt) is studied by employing the effective-field theory (EFT) with correlations as well as the Glauber-type stochastic dynamics. We determine the time variations of m(wt) and h(wt) for various temperatures, and investigate the dynamic magnetic hysteresis behavior. We also investigate the temperature dependence of the dynamic magnetization, hysteresis loop area and correlation near the transition point in order to characterize the nature (first- or second-order) of the dynamic transitions as well as obtain the dynamic phase transition temperatures. The hysteresis loops are obtained for different reduced temperatures and we find that the areas of the loops are decreasing with the increasing of the reduced temperatures. We also present the dynamic phase diagrams and compare the results of the EFT with the results of the dynamic mean-field approximation. The phase diagrams exhibit many dynamic critical points, such as tricritical (•), zero-temperature critical (Z), triple (TP) and multicritical (A) points. According to values of Hamiltonian parameters, besides the paramagnetic (P), ferromagnetic (F) fundamental phases, one coexistence or mixed phase region, (F+P) and the reentrant behavior exist in the system. The results are in good agreement with some experimental and theoretical results.  相似文献   

5.
The dynamic behavior of a mixed spin-1 and spin-2 Ising system with a crystal-field interaction in the presence of a time-dependent oscillating external magnetic field on a hexagonal lattice is studied by using the Glauber-type stochastic dynamics. The lattice is formed by alternate layers of spins σ=1σ=1 and S=2. The Hamiltonian model includes intersublattice, intrasublattice and crystal-field interactions. The set of mean-field dynamic equations is obtained by employing the Glauber transition rates. Firstly, we study time variations of the average sublattice magnetizations in order to find the phases in the system, and the thermal behavior of the average sublattice magnetizations in a period or the dynamic sublattice magnetizations to obtain the dynamic phase transition points as well as to characterize the nature (continuous and discontinuous) of transitions. Then, the behavior of the dynamic total magnetization as a function of the temperature is investigated to find the dynamic compensation points as well as determine the type of behavior. We also present the dynamic phase diagrams for both presence and absence of the dynamic compensation temperatures in the nine different planes. According to the values of Hamiltonian parameters, besides the paramagnetic (p), antiferromagnetic (af), ferrimagnetic (i) and non-magnetic (nm) fundamental phases, eight different mixed phases and the compensation temperature or L- and N-types behavior in the Néel classification nomenclature exist in the system.  相似文献   

6.
An effective-field theory with correlations is developed for a mixed spin-1 and spin-3/2 Ising system with two alternative layers of a honeycomb lattice. Spin-1 atoms and spin-3/2 atoms are distributed in alternative layers of a honeycomb lattice. We consider that the nearest-neighbor spins of each layer are coupled ferromagnetically and the interaction between the vertically aligned spins and adjacent spins are coupled either ferromagnetically or antiferromagnetically depending on the sign of the bilinear exchange interactions. We investigate the temperature dependence of the total magnetization to find the compensation points and to determine the type of compensation behavior. We present the phase diagrams in different planes for h=0, and the phase diagrams contain the paramagnetic, nonmagnetic and ferrimagnetic phases. The system also presents a tricritical behavior besides multicritical point (A), isolated critical point (C) and double critical end point (B) depending on the interaction parameters.  相似文献   

7.
利用有效场理论研究了纳米管上稀释晶场中混合自旋Blume-Capel模型格点的磁化强度,得到了系统格点的磁化强度与稀释晶场取值概率、外磁场和晶场的关系.结果表明:取值概率、外磁场、交换相互作用和晶场强度等诸多因素相互竞争,使系统表现出比恒定晶场作用的Blume-Capel模型更为丰富的磁学特性;外磁场能够增大系统格点的磁化强度,导致系统的二级相变消失;负晶场的作用使系统发生一级相变;稀释晶场会抑制系统的磁化强度,导致其基态饱和值小于1.  相似文献   

8.
In this paper, we have investigated the bimodal random-field spin-2 Ising system in a transverse field by combining the pair approximation with the discretized path-integral representation. The exact equations for the second-order phase transition lines and tricritical points are obtained in terms of the random field H, the transverse field G and the coordination number z. It is found that there are some critical values for H and G where the tricritical points disappear for given z. We have also observed that the system presents reentrant behavior which may be caused by the quantum effects and randomness. The phase diagram with respect to the random field and the second-order phase transition temperature are studied extensively for given values of the transverse field and the coordination number.  相似文献   

9.
The dynamic phase transitions are studied in the kinetic spin-2 Blume-Capel model under a time-dependent oscillating magnetic field using the effective-field theory with correlations. The effective-field dynamic equation for the average magnetization is derived by employing the Glauber transition rates and the phases in the system are obtained by solving this dynamic equation. The nature (first- or second-order) of the dynamic phase transition is characterized by investigating the thermal behavior of the dynamic magnetization and the dynamic phase transition temperatures are obtained. The dynamic phase diagrams are constructed in the reduced temperature and magnetic field amplitude plane and are of seven fundamental types. Phase diagrams contain the paramagnetic (P), ferromagnetic-2 (F2) and three coexistence or mixed phase regions, namely the F2+P, F1+P and F2+F1+P, which strongly depend on the crystal-field interaction (D) parameter. The system also exhibits the dynamic tricritical behavior.  相似文献   

10.
The phase diagrams of the nonequilibrium mixed spin-3/2 and spin-2 Ising ferrimagnetic system on square lattice under a time-dependent external magnetic field are presented by using the Glauber-type stochastic dynamics. The model system consists of two interpenetrating sublattices of spins σ=3/2 and S=2, and we take only nearest-neighbor interactions between pairs of spins. The system is in contact with a heat bath at absolute temperature Tabs and the exchange of energy with the heat bath occurs via one-spin flip of the Glauber dynamics. First, we investigate the time variations of average order parameters to find the phases in the system and then the thermal behavior of the dynamic order parameters to obtain the dynamic phase transition (DPT) points as well as to characterize the nature (first- or second-order) phase transitions. The dynamic phase diagrams are presented in two different planes. Phase diagrams contain paramagnetic (p), ferrimagnetic (i1, i2, i3) phases, and three coexistence or mixed phase regions, namely i1+p, i2+p and i3+p mixed phases that strongly depend on interaction parameters.  相似文献   

11.
The mixed spin-1 and spin- \frac52\frac{5}{2} ferromagnetic Ising model with bilinear (J) and biquadratic (K) nearest-neighbor exchange interactions and a single-ion potential or crystal-field interaction (D) is studied on the Bethe lattice by means of exact recursion equations. First, the phase diagram of the system at zero temperature is obtained in the (D/Jq, K/Jq) plane, where q denotes the coordination number of the lattice. Second, the sublattice magnetizations as functions of the temperature, the crystal-field and the biquadratic interaction strengths are thoroughly investigated. For q = 3, the resulting phase diagrams show first and second order phase transitions as well as compensation points where the net magnetization of the whole lattice should vanish in the antiferromagnetic version of the model. One interesting feature of the model concerns the presence of tricritical points. Our calculations show that at non-zero temperature, none of the sublattice can order separately. However, under an external magnetic field, some interesting phase diagrams with partially ordered phases arise.  相似文献   

12.
We use exact recursion relations to study the magnetic properties of the half-integer mixed spin-5/2 and spin-3/2 Blume-Capel Ising ferromagnetic system on the two-fold Cayley tree that consists of two sublattices A and B. Two positive crystal-field interactions Δ1 and Δ2 are considered for the sublattice with spin-5/2 and spin-3/2 respectively. For different coordination numbers q of the Cayley tree sites, the phase diagrams of the model are presented with a special emphasis on the case q = 3, since other values of q reproduce similar results. First, the T = 0 phase diagram is illustrated in the (D A = Δ1/J,D B = Δ2/J) plane of reduced crystal-field interactions. This diagram shows triple points and coexistence lines between thermodynamically stable phases. Secondly, the thermal variation of the magnetization belonging to each sublattice for some coordination numbers q are investigated as well as the Helmoltz free energy of the system. First-order and second-order phase transitions are found. The second-order phase transitions become sharper and sharper when D A or D B increases. The first-order transitions only exist for some appropriate non-zero values of D A and/or D B . The corresponding transition lines never connect to the second-order transition lines. Thus, the non-existence of tricritical points remains one of the key features of the present model. The magnetic exponent β 0 of the model is estimated and found to be ¼ at small values of D A = D B = D and β 0 = ½ at large values of D. At intermediate values of D, there is a crossover region where the magnetic exponent displays interesting behaviours.  相似文献   

13.
利用有效场理论研究了纳米管上双模随机交错晶场中混合自旋Blume-Capel模型格点的平均磁化强度,得到了系统格点的平均磁化强度与双模随机晶场的取值概率、外磁场、晶场参数和晶场强度比值的关系.结果表明:取值概率、外磁场、交换相互作用、晶场强度比值和晶场强度等诸多因素相互竞争,使系统表现出比恒定晶场作用的Blume-Capel模型更为丰富的磁化现象;双模随机交错晶场会抑制系统的平均磁化强度,使其基态饱和值小于5/6;外磁场导致系统的二级相变消失;一定条件下系统发生一级相变;系统的平均磁化强度呈现部分缺失和负值现象.  相似文献   

14.
The phase diagrams in the mixed spin-3/2 and spin-2 Ising system with two alternative layers on a honeycomb lattice are investigated and discussed by the use of the effective-field theory with correlations. The interaction of the nearest-neighbour spins of each layer is taken to be positive (ferromagnetic interaction) and the interaction of the adjacent spins of the nearest-neighbour layers is considered to be either positive or negative (ferromagnetic or anti-ferromagnetic interaction). The temperature dependence of the layer magnetizations of the system is examined to characterize the nature (continuous or discontinuous) of the phase transitions and obtain the phase transition temperatures. The system exhibits both second-and first-order phase transitions besides triple point (T P ), critical end point (E), multicritical point (A), isolated critical point (C) and reentrant behaviour depending on the interaction parameters. We have also studied the temperature dependence of the total magnetization to find the compensation points, as well as to determine the type of behaviour, and N-type behaviour in N′eel classification nomenclature existing in the system. The phase diagrams are constructed in eight different planes and it is found that the system also presents the compensation phenomena depending on the sign of the bilinear exchange interactions.  相似文献   

15.
The stationary states of the kinetic spin-1 Blume-Capel (BC) model on the Bethe lattice are analyzed in detail in terms of recursion relations. The model is described using a Glauber-type stochastic dynamics in the presence of a time-dependent oscillating external magnetic field (h) and crystal field (D) interactions. The dynamic order parameter, the hysteresis loop area and the dynamic correlation are calculated. It is found that the magnetization oscillates around nonzero values at low temperatures (T) for the ferromagnetic (F) phase while it only oscillates around zero values at high temperatures for the paramagnetic (P) phase. There are regions of the phase space where the two solutions coexist. The dynamic phase diagrams are obtained on the (kT/J,h/J) and (kT/J,D/J) planes for the coordination number q=4. In addition to second-order and first-order phase transitions, dynamical tricritical points and triple points are also observed.  相似文献   

16.
Bayram Deviren  Mehmet Erta? 《Physica A》2010,389(10):2036-2047
An effective-field theory with correlations has been used to study critical behaviors of a mixed spin-1 and spin-2 Ising system on a honeycomb and square lattices in the absence and presence of a longitudinal magnetic field. The ground-state phase diagram of the model is obtained in the longitudinal magnetic field (h) and a single-ion potential or crystal-field interaction (Δ) plane. The thermal behavior of the sublattice magnetizations of the system are investigated to characterize the nature of (continuous and discontinuous) of the phase transitions and obtain the phase transition temperature. The phase diagrams are presented in the (Δ/|J|, kBT/|J|) plane. The susceptibility, internal energy and specific heat of the system are numerically examined and some interesting phenomena in these quantities are found due to the absence and presence of the applied longitudinal magnetic field. Moreover, the system undergoes second- and first-order phase transition; hence, the system gives a tricritical point. The system also exhibits reentrant behavior.  相似文献   

17.
We present a study, within a mean-field approach, of the kinetics of a mixed ferrimagnetic model on a square lattice in which two interpenetrating square sublattices have spins that can take two values, , alternated with spins that can take the four values, . We use the Glauber-type stochastic dynamics to describe the time evolution of the system with a crystal-field interaction in the presence of a time-dependent oscillating external magnetic field. The nature (continuous and discontinuous) of transition is characterized by studying the thermal behaviors of average order parameters in a period. The dynamic phase transition points are obtained and the phase diagrams are presented in the reduced magnetic field amplitude (h) and reduced temperature (T) plane, and in the reduced temperature and interaction parameter planes, namely in the (h, T) and (d, T) planes, d is the reduced crystal-field interaction. The phase diagrams always exhibit a tricritical point in (h, T) plane, but do not exhibit in the (d, T) plane for low values of h. The dynamic multicritical point or dynamic critical end point exist in the (d, T) plane for low values of h. Moreover, phase diagrams contain paramagnetic (p), ferromagnetic (f), ferrimagnetic (i) phases, two coexistence or mixed phase regions, (f+p) and (i+p), that strongly depend on interaction parameters.  相似文献   

18.
The dynamic behavior of a two-sublattice spin-1 Ising model with a crystal-field interaction (D) in the presence of a time-varying magnetic field on a hexagonal lattice is studied by using the Glauber-type stochastic dynamics. The lattice is formed by alternate layers of spins σ=1 and S=1. For this spin arrangement, any spin at one lattice site has two nearest-neighbor spins on the same sublattice, and four on the other sublattice. The intersublattice interaction is antiferromagnetic. We employ the Glauber transition rates to construct the mean-field dynamical equations. Firstly, we study time variations of the average magnetizations in order to find the phases in the system, and the temperature dependence of the average magnetizations in a period, which is also called the dynamic magnetizations, to obtain the dynamic phase transition (DPT) points as well as to characterize the nature (continuous and discontinuous) of transitions. Then, the behavior of the total dynamic magnetization as a function of the temperature is investigated to find the types of the compensation behavior. Dynamic phase diagrams are calculated for both DPT points and dynamic compensation effect. Phase diagrams contain the paramagnetic (p) and antiferromagnetic (af) phases, the p+af and nm+p mixed phases, nm is the non-magnetic phase, and the compensation temperature or the L-type behavior that strongly depend on the interaction parameters. For D<2.835 and H0>3.8275, H0 is the magnetic field amplitude, the compensation effect does not appear in the system.  相似文献   

19.
The mixed spin-(1/2, 1) Ising chain with axial and rhombic zero-field splitting parameters in the presence of the longitudinal magnetic field is exactly solved within the framework of decoration-iteration transformation and transfer-matrix method. Our particular emphasis is laid on an investigation of the influence of the rhombic term, which is responsible for an onset of quantum entanglement between two magnetic states Skz=±1 of the spin-1 atoms. It is shown that the rhombic term gradually destroys a classical ferrimagnetic order in the ground state and simultaneously causes diversity in magnetization curves including intermediate plateau regions, regions with a continuous change in the magnetization as well as several unusual field-induced transitions accompanied with magnetization jumps. Another interesting findings concern with an appearance of the round minimum in the temperature dependence of susceptibility times temperature data, the double-peak zero-field specific heat curves and the enhanced magnetocaloric effect. The temperature dependence of the specific heat with three separate maxima may also be detected when driving the system through the axial and rhombic zero-field splitting parameters close enough to a phase boundary between the ferrimagnetic and disordered states and applying sufficiently small longitudinal magnetic field.  相似文献   

20.
We extend the recent paper [W. Jiang, V-C. Lo, B-D. Bai, J. Yang, Physica A 389 (2010) 2227-2233] to present a study, within a mean-field approach, the dynamic magnetic properties of the mixed spin-2 and spin-5/2 Ising ferrimagnetic system, which corresponds the molecular-based magnetic materials AFeIIFeIII(C2O4)3 [ A=N(n-CnH2n+1)4, n=3-5], by using the Glauber-type stochastic dynamics. This mixed Ising ferrimagnetic system is used on a layered honeycomb lattice in which FeII (S=5/2) and FeIII (σ=2) occupy sites. First, we investigate the time variations of average order parameters to find the phases in the system and then the thermal behavior of the dynamic order parameters to obtain the dynamic phase transition (DPT) points as well as to characterize the nature (first-or second-order) phase transitions. We also present the dynamic phase diagrams and study the dynamic magnetic hysteresis loop behaviors of the kinetic mixed spin-2 and spin-5/2 Ising ferrimagnetic system. The results are compared with some experimental and theoretical works and a good overall agreement is found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号