首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Several methods to compress suffix trees were defined, most of them with the aim of obtaining compact (that is, space economical) index structures. Besides this practical aspect, a compression method can reveal structural properties of the resulting data structure, allowing a better understanding of it and a better estimation of its performances.

In this paper, we propose a simple method to compress suffix trees by merging couples of nodes. This idea was already used in the literature in a context different from ours. The originality of our approach is that the nodes we merge are not chosen with respect to their subtrees (which is difficult to test algorithmically), nor with respect to the words spelled along branches (which usually requires testing several branches before finding the good one) but with respect to their position in the tree (which is easy to compute). Another particularity of our method is it needs to read no edge label: it is exclusively based on the topology of the suffix tree. The compact structure resulting after compression is the factor/suffix oracle introduced by Allauzen, Crochemore and Raffinot whose accepted language includes the accepted language of the corresponding suffix tree.

The interest of our paper is therefore threefold:

1. A topology-based compression method is defined for (compact) suffix trees.

2. A new property of a factor/suffix oracle is established, that is, like a DAG, it results from the corresponding suffix tree after a linear number of appropriate node mergings; unlike a DAG, the merged nodes do not necessarily have isomorphical subtrees.

3. A new algorithm to transform a suffix tree into a factor/suffix oracle is given, which has linear running time and thus improves the quadratic complexity previously known for the same task.

Keywords: Indexing structure; Factor recognition; Suffix recognition  相似文献   


2.

Let K denote a compact subset of the complex plane . We present correct proof that the stable rank of A(K) is one. Hereby, A (K) is the algebra of all continuous functions on K which are analytic in the interior of K.

Let G denote a plane domain whose boundary consists of finitely many closed, nonintersecting Jordan curves. We show that for a fixed function of gεC( ), g≠0, the following assertions are equivalent:

Every unimodular element (f, g) is reducible to the principal component exp(C( )).

The zero set Zg is polynomially convex, i.e., its complement Zg is connected.

Author Keywords: Bass' stable rank; reducible; unimodular; 1-stable; boundary principle  相似文献   


3.
Let B be a separable Banach space. The following is one of the results proved in this paper. The Banach space B is of cotype p if and only if

1. dn, n 1, has no subsequence converging in probability, and

2. ∑n 1|an|p < ∞ whenever ∑n 1andn converges almost surely are equivalent for every sequence dn, n 1, of symmetric independent random elements taking values in B.

Author Keywords: Bounded in probability; convergence in probability; cotype; uniform tightness condition  相似文献   


4.
Discrete sensor placement problems in distribution networks   总被引:1,自引:0,他引:1  
We consider the problem of placing sensors in a network to detect and identify thesource of any contamination. We consider two variants of this problem:
(1) sensor-constrained: we are allowed a fixed number of sensors and want to minimize contaminationdetection time; and

(2) time-constrained: we must detect contamination within a given time limit and want to minimize the number of sensors required.

Our main results are as follows. First, we give a necessary and sufficient condition for source identification.Second, we show that the sensor and time constrained versions of the problem are polynomially equivalent. Finally, we show that the sensor-constrained version of the problem is polynomially equivalent to the asymmetric k-center problem and that the time-constrained version of the problem is polynomially equivalent to the dominating set problem.  相似文献   


5.
Let G be a connected graph with v(G) 2 vertices and independence number (G). G is critical if for any edge e of G:

1. (i) (Ge) > (G), if e is not a cut edge of G, and

2. (ii) v(Gi) − (Gi) < v(G) − (G), I = 1, 2, if e is a cut edge and G1, G2 are the two components of Ge.

Recently, Katchalski et al. (1995) conjectured that: if G is a connected critical graph, then with equality possible if and only if G is a tree. In this paper we establish this conjecture.  相似文献   


6.
In this paper we develop a concise and transparent approach for solving Mellin convolution equations where the convolutor is the product of an algebraic function and a Gegenbauer function. Our method is primarily based on

1. the use of fractional integral/differential operators;

2. a formula for Gegenbauer functions which is a fractional extension of the Rodrigues formula for Gegenbauer polynomials (see Theorem 3);

3. an intertwining relation concerning fractional integral/differential operators (see Theorem 1), which in the integer case reads (d/dx)2n+1 = (x−1 d/dx)nx2n+1(x−1 d/dx)n+1.

Thus we cover most of the known results on this type of integral equations and obtain considerable extensions. As a special illustration we present the Gegenbauer transform pair associated to the Radon transformation.  相似文献   


7.
Let denote a field, and let V denote a vector space over with finite positive dimension. We consider a pair of linear transformations A:VV and A*:VV satisfying both conditions below:

1. [(i)] There exists a basis for V with respect to which the matrix representing A is diagonal and the matrix representing A* is irreducible tridiagonal.

2. [(ii)] There exists a basis for V with respect to which the matrix representing A* is diagonal and the matrix representing A is irreducible tridiagonal.

We call such a pair a Leonard pair on V. Refining this notion a bit, we introduce the concept of a Leonard system. We give a complete classification of Leonard systems. Integral to our proof is the following result. We show that for any Leonard pair A,A* on V, there exists a sequence of scalars β,γ,γ*,,* taken from such that both

where [r,s] means rssr. The sequence is uniquely determined by the Leonard pair if the dimension of V is at least 4. We conclude by showing how Leonard systems correspond to q-Racah and related polynomials from the Askey scheme.  相似文献   


8.
We study the problem of characterizing sets of points whose Voronoi diagrams are trees and if so, what are the combinatorial properties of these trees. The second part of the problem can be naturally turned into the following graph drawing question: Given a tree T, can one represent T so that the resulting drawing is a Voronoi diagram of some set of points? We investigate the problem both in the Euclidean and in the Manhattan metric. The major contributions of this paper are as follows.

• We characterize those trees that can be drawn as Voronoi diagrams in the Euclidean metric.

• We characterize those sets of points whose Voronoi diagrams are trees in the Manhattan metric.

• We show that the maximum vertex degree of any tree that can be drawn as a Manhattan Voronoi diagram is at most five and prove that this bound is tight.

• We characterize those binary trees that can be drawn as Manhattan Voronoi diagrams.

Author Keywords: Graph drawing; Voronoi diagrams; Graph characterization; Geometric graphs  相似文献   


9.
A hinged dissection of a set of polygons S is a collection of polygonal pieces hinged together at vertices that can be rotated into any member of S. We present a hinged dissection of all edge-to-edge gluings of n congruent copies of a polygon P that join corresponding edges of P. This construction uses kn pieces, where k is the number of vertices of P. When P is a regular polygon, we show how to reduce the number of pieces to k/2(n−1). In particular, we consider polyominoes (made up of unit squares), polyiamonds (made up of equilateral triangles), and polyhexes (made up of regular hexagons). We also give a hinged dissection of all polyabolos (made up of right isosceles triangles), which do not fall under the general result mentioned above. Finally, we show that if P can be hinged into Q, then any edge-to-edge gluing of n congruent copies of P can be hinged into any edge-to-edge gluing of n congruent copies of Q.  相似文献   

10.
Given a set X of points in the plane, two distinguished points s,tX, and a set Φ of obstacles represented by line segments, we wish to compute a simple polygonal path from s to t that uses only points in X as vertices and avoids the obstacles in Φ. We present two results: (1) we show that finding such simple paths among arbitrary obstacles is NP-complete, and (2) we give a polynomial-time algorithm that computes simple paths when the obstacles form a simple polygon P and X is inside P. Our algorithm runs in time O(m2n2), where m is the number of vertices of P and n is the number of points in X.  相似文献   

11.
The purpose of this paper is to develop

1. a theory of laser stimulated vaporization of droplets,

2. a theory of internal heating resulting from vibration waves in linearly responding elastic material, and

3. flame theory.

There are applications to sending information through clouds on laser beams and to the control of temperature in ultrasonic welding, and improvement of the design of aircraft engines and the processes used for the destruction of toxic chemicals.

We develop a theory of thermal excursions resulting from ultrasonic welding in 3 and 7 dimensions, and interpret it as an elastic interaction with damping in a Voigt solid. It is hypothesized that with good control of temperature, one could achieve strong and uniform welds by this process and greatly reduce the cost of manufacturing aircraft, and other aluminum structures. We consider equations describing the conservation of mass, momentum, and energy coupled by an equation of state, and consider general mass, momentum, and energy transfer relationships in a compressible body subjected to external stimuli. For the Voigt solid theory, a linear elastic theory with damping forces, we show how some simple local time averaging gives us a dovetailed system consisting of the elastic wave equations whose solution provides the source term for an otherwise uncoupled heat equation. For the more general theory of droplet vaporization, we illustrate a general nonlinear energy equation which includes a radiation energy conductivity term. We get a class of exact solutions for a nonlinear flame front boundary value problem.  相似文献   


12.
The greedy triangulation of a finite planar point set is obtained by repeatedly inserting a shortest diagonal that does not cross those already in the plane. The Delaunay triangulation, which is the straight-line dual of the Voronoi diagram, can be produced in O(nlogn) worst-case time, and often even faster, by several practical algorithms. In this paper we show that for any planar point set S, if the Delaunay triangulation of S is given, then the greedy triangulation of S can be computed in linear worst-case time (and linear space).  相似文献   

13.
Given two fixed graphs X and Y, the (X,Y)-intersection graph of a graph G is a graph where

1. each vertex corresponds to a distinct induced subgraph in G isomorphic to Y, and

2. two vertices are adjacent iff the intersection of their corresponding subgraphs contains an induced subgraph isomorphic to X.

This notion generalizes the classical concept of line graphs since the (K1,K2)-intersection graph of a graph G is precisely the line graph of G.

Let ( , respectively) denote the family of line graphs of bipartite graphs (bipartite multigraphs, respectively), and refer to a pair (X,Y) as a 2-pair if Y contains exactly two induced subgraphs isomorphic to X. Then and , respectively, are the smallest families amongst the families of (X,Y)-intersection graphs defined by so called hereditary 2-pairs and hereditary non-compact 2-pairs. Furthermore, they can be characterized through forbidden induced subgraphs. With this motivation, we investigate the properties of a 2-pair (X,Y) for which the family of (X,Y)-intersection graphs coincides with (or ). For this purpose, we introduce a notion of stability of a 2-pair and obtain the desired characterization for such stable 2-pairs. An interesting aspect of the characterization is that it is based on a graph determined by the structure of (X,Y).  相似文献   


14.
15.
Yair Caro 《Discrete Mathematics》1996,160(1-3):229-233
We prove the following result: For every two natural numbers n and q, n q + 2, there is a natural number E(n, q) satisfying the following:

1. (1) Let S be any set of points in the plane, no three on a line. If |S| E(n, q), then there exists a convex n-gon whose points belong to S, for which the number of points of S in its interior is 0 (mod q).

2. (2) For fixed q, E(n,q) 2c(qn, c(q) is a constant depends on q only.

Part (1) was proved by Bialostocki et al. [2] and our proof is aimed to simplify the original proof. The proof of Part (2) is completely new and reduces the huge upper bound of [2] (a super-exponential bound) to an exponential upper bound.  相似文献   


16.
In this paper, we present a linear time algorithm to remove winding of a simple polygon P with respect to a given point q inside P. The algorithm removes winding by locating a subset of Jordan sequence that is in the proper order and uses only one stack.  相似文献   

17.
Given an edge-weighted tree T and an integer p1, the minmax p-traveling salesmen problem on a tree T asks to find p tours such that the union of the p tours covers all the vertices. The objective is to minimize the maximum of length of the p tours. It is known that the problem is NP-hard and has a (2−2/(p+1))-approximation algorithm which runs in O(pp−1np−1) time for a tree with n vertices. In this paper, we consider an extension of the problem in which the set of vertices to be covered now can be chosen as a subset S of vertices and weights to process vertices in S are also introduced in the tour length. For the problem, we give an approximation algorithm that has the same performance guarantee, but runs in O((p−1)!·n) time.  相似文献   

18.
We consider a generalized version of the Steiner problem in graphs, motivated by the wire routing phase in physical VLSI design: given a connected, undirected distance graph with required classes of vertices and Steiner vertices, find a shortest connected subgraph containing at least one vertex of each required class. We show that this problem is NP-hard, even if there are no Steiner vertices and the graph is a tree. Moreover, the same complexity result holds if the input class Steiner graph additionally is embedded in a unit grid, if each vertex has degree at most three, and each class consists of no more than three vertices. For similar restricted versions, we prove MAX SNP-hardness and we show that there exists no polynomial-time approximation algorithm with a constant bound on the relative error, unless P = NP. We propose two efficient heuristics computing different approximate solutions in time OE¦+¦V¦log¦V¦) and in time O(cE¦+¦V¦log¦V¦)), respectively, where E is the set of edges in the given graph, V is the set of vertices, and c is the number of classes. We present some promising implementation results. kw]Steiner Tree; Heuristic; Approximation complexity; MAX-SNP-hardness  相似文献   

19.
The complexity of the contour of the union of simple polygons with n vertices in total can be O(n2) in general. A notion of fatness for simple polygons is introduced that extends most of the existing fatness definitions. It is proved that a set of fat polygons with n vertices in total has union complexity O(n log log n), which is a generalization of a similar result for fat triangles (Matou ek et al., 1994). Applications to several basic problems in computational geometry are given, such as efficient hidden surface removal, motion planning, injection molding, and more. The result is based on a new method to partition a fat simple polygon P with n vertices into O(n) fat convex quadrilaterals, and a method to cover (but not partition) a fat convex quadrilateral with O(l) fat triangles. The maximum overlap of the triangles at any point is two, which is optimal for any exact cover of a fat simple polygon by a linear number of fat triangles.  相似文献   

20.
Let G be a planar graph with n vertices, v be a specified vertex of G, and P be a set of n points in the Euclidian plane in general position. A straight-line embedding of G onto P is an embedding of G onto whose images of vertices are distinct points in P and whose images of edges are (straight) line segments. In this paper, we classify into five classes those pairs of G and v such that for any P and any p P, G has a straight-line embedding onto P which maps v to p. We then show that all graphs in three of the classes indeed have such an embedding. This result gives a solution to a generalized version of the rooted-tree embedding problem raised by M. Perles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号