共查询到20条相似文献,搜索用时 46 毫秒
1.
We have studied the thermoelectric properties through ferromagnetic leads-QD coupled system(F-QD-F)in the Kondo regime by nonequilibrium Green's functions method. The spin-flip effect induced by ferromagnetic leads and Kondo effect influence the thermoelectric properties significantly. The peak-valley structure emerges at the low temperature due to Kondo resonance, and the peak-valley structure also relies on the polarization angle θ, the spindependent linewidth function Γγσ and the energy level of QD ?d. Novel resonant peak also emerges in the curve of ZTc versus polarization angle θ. The Kondo effect suppresses the figure of merit ZTc and the spin-dependent figure of merit ZTs. In addition, the spin-dependent figure of merit ZTs is relate with the gap between Γγ↑and Γγ↓. 相似文献
2.
We investigate the linear and nonlinear transport through a single level
quantum dot connected to two ferromagnetic leads in Kondo regime, using the slave-boson
mean-field approach for finite on-site Coulomb repulsion. We find that
for antiparallel alignment of the spin orientations in the leads, a
single zero-bias Kondo peak always appears in the voltage-dependent differential conductance with peak height going down to zero as the polarization grows to P=1.
For parallel configuration, with increasing polarization from zero,
the Kondo peak descends and greatly widens with the appearance of shoulders,
and finally splits into two peaks on both sides of the bias voltage
around P~0.7 until disappearing at
even larger polarization strength. At any spin orientation angle θ,
the linear conductance generally drops with growing polarization strength.
For a given finite polarization, the minimum linear conductance always
appears at θ=π. 相似文献
3.
Using the nonequilibrium Green's function technique, we investigate the current induced heat generation in Kondo regime. The Kondo effect influences the heat generation significantly. In the curve of heat generation versus the bias, a negative differential of the heat generation is exhibited. The symmetry of the heat generation is destroyed by the strong electron-electron interaction and the electron-phonon interaction. 相似文献
4.
Using an equation of motion technique, we investigate the spin-polarized transport through a quantum dot coupled to ferromagnetic leads and a mesoseopie ring by the Anderson Hamiltonian. We analyze the transmission probability of this system in both the equilibrium and nonequilibrium cases, and our results reveal that the transport properties show some noticeable characteristics depending upon the spin-polarized strength p, the magnetic flux Ф and the number of lattice sites NR in the mesoseopic ring. These effects might have some potential applications in spintronics. 相似文献
5.
6.
Current and Shot Noise in a Quantum Dot Coupled to Ferromagnetic Leads in the Kondo Regime 下载免费PDF全文
Using the Keldysh nonequilibrium Green function technique, we study the current and shot noise spectroscopy of an interacting quantum dot coupled to two ferromagnetic leads with different polarizations in the Kondo regime. General formulas of current and shot noise are obtained, which can be applied in both the parallel (P) and antiparallel (AP) alignment cases. For large polarization values, it is revealed that the behaviour of differential conductance and shot noise are completely different for spin up and spin down configurations in the P alignment case. However, the differential conductance and shot noise have similar properties for different spin configurations in the P alignment case with the small polarization value and in the AP alignment case with any polarization value. 相似文献
7.
Kondo transport properties through a Kondo-type quantum dot (QD) with a side-coupled triple-QD structure are systematically investigated by using the non-equilibrium Green's function method. We firstly derive the formulae of the current, the linear conductance, the transmission coefficient, and the local density of states. Then we carry out the analytical and numerical studies and some universal conductance properties are obtained. It is shown that the number of the conductance valleys is intrinsically determined by the side-coupled QDs and at most equal to the number of the QDs included in theside-coupled structure in the asymmetric limit. In the process of forming the conductance valleys, the side-coupled QD system plays the dominant role while the couplings between the Kondo-type QD and the side-coupled structure play the subsidiary and indispensable roles. To testify the validity of the universal conductance properties, another different kinds of side-coupled triple-QD structures are considered. It should be emphasized that these universal properties are applicable in understanding this kind of systems with arbitrary many-QD side structures. 相似文献
8.
We adopt the nonequilibrium Green's function method to theoretically study the Kondo effect in a deformed molecule, which is treated as an electron-phonon interaction (EPI) system. The self-energy for phonon part is calculated in the standard many-body diagrammatic expansion up to the second order in EPI strength. We find that the multiple phonon-assisted Kondo satellites arise besides the usual Kondo resonance. In the antiparallel magnetic configuration the splitting of main Kondo peak and phonon-assisted satellites only happen for asymmetrical dot-lead couplings, but it is free from the symmetry for the parallel magnetic configuration. The EPI strength and vibrational frequency can enhance the spin splitting of both main Kondo and satellites. It is shown that the suppressed zero-bias Kondo resonance can be restored by applying an external magnetic field, whose magnitude is dependent on the phononic effect remarkably. Although the asymmetry in tunnel coupling has no contribution to the restoration of spin splitting of Kondo peak, it can shrink the external field needed to switch tunneling magnetoresistance ratio between large negative dip and large positive peak. 相似文献
9.
In the present paper, we study the effect of van Hove singularities of conduction electron on the transport of a single quantum dot system in the Kondo regime. By using both the equation-of-motion and the noncrossing approximation techniques, we show that the corrections caused by these singularities are actually minor. It can be explained by observing that the singularities in the equations, which determine the electronic DOS on the dot, are integrable. Furthermore, we find that, although each line width function is divergent at van Hove singular points, the total divergence is canceled out in the final formula to calculate the current through the system. Therefore, as far as the qualitative properties of the system is concerned, these singularities can be ignored and the wide-band approximation can be safely used in calculation. 相似文献
10.
In the present paper, we study the effect of van Hove singularities
of conduction electron on the transport of a single quantum dot system
in the Kondo regime. By using both the equation-of-motion and the noncrossing approximation techniques, we show that the corrections caused by these singularities are actually minor. It can be explained by observing
that the singularities in the equations,
which determine the electronic DOS on the dot, are integrable.
Furthermore, we find that, although each line width function
is divergent at van Hove singular points, the total divergence
is canceled out in the final formula to calculate the current
through the system. Therefore, as far as the qualitative properties
of the system is concerned, these singularities can be ignored and
the wide-band approximation can be safely used in calculation. 相似文献
11.
In the present paper, by applying the Lang-Firsov canonical transformation and the so-called non-crossing approximation technique, we investigate the joint effects of the electron-phonon interaction and an external alternating gate voltage on the transport of a quantum dot
system in the Kondo regime. We find that, while the satellite Kondo
resonant peaks appear in both the averaged local density of states and
the differential conductance, the main Kondo peak at the Fermi energy
is greatly suppressed. These results confirm the previous ones derived
by other methods, such as the equation of motion solution. Furthermore,
based on the picture of virtual transition between quasi-eigenstates
in the system, we also give a slightly different explanation on these
phenomena. 相似文献
12.
We study the properties of the heat flow generated by electric current in a quantum dot(QD) molecular sandwiched between two ferromagnetic leads. The heat is exchanged between the QD and the phonon reservoir coupled to it. We find that when the leads' magnetic moments are in parallel configuration, the total heat generation is independent on the leads' spin-polarization regardless of the magnitude of the intradot Coulomb interaction. This behavior is similar to that of the electronic current. In the antiparallel configuration, however, the influences of the leads' ferromagnetism on the heat generation are quite different from those on the electric current. Under the conditions of weak intradot Coulomb interaction and small bias voltage, the heat generation is monotonously suppressed by increasing leads' spin-polarization.Whereas for sufficient large intradot Coulomb interaction and bias voltage, the heat generation shows non-monotonous behavior due to the electron-phonon interaction and the spin accumulation induced on the dot. Furthermore, the magnitude of the negative differential of the heat generation previously found in a QD connected to nonmagnetic leads can be weakened by the increase of the spin-polarization of the ferromagnetic leads. 相似文献
13.
We study the properties of the heat flow generated by electric current in a quantum dot (QD) molecular sandwiched between two ferromagnetic leads. The heat is exchanged between the QD and the phonon reservoir coupled to it. We find that when the leads' magnetic moments are in parallel configuration, the total heat generation is independent on the leads' spin-polarization regardless of the magnitude of the intradot Coulomb interaction. This behavior is similar to that of the electronic current. In the antiparallel configuration, however, the influences of the leads' ferromagnetism on the heat generation are quite different from those on the electric current. Under the conditions of weak intradot Coulomb interaction and small bias voltage, the heat generation is monotonously suppressed by increasing leads' spin-polarization. Whereas for sufficient large intradot Coulomb interaction and bias voltage, the heat generation shows non-monotonous behavior due to the electron-phonon interaction and the spin accumulation induced on the dot. Furthermore, the magnitude of the negative differential of the heat generation previously found in a QD connected to nonmagnetic leads can be weakened by the increase of the spin-polarization of the ferromagnetic leads. 相似文献
14.
Using the nonequilibrium Green's function technique, we investigate the Kondo effect in the quantum dot with perpendicular magnetic fields, in which one is the Zeeman splitting lies in the z-direction and the other is the spin flip points at the x-direction. It is found whatever one or two magnetic fields are applied, the local density of states (LDOS) will split into two peaks. The positions of two Kondo resonance peaks are determined by Zeeman energy △ when J = 0, and by √△^2+J^2 when J≠0. 相似文献
15.
Heat current exchanged between a two-level quantum dot (QD) and a phonon reservoir coupled to it is studied within the nonequilibrium Green's function method. We consider that the QD is connected to the left and right ferromagnetic leads. It is found that the negative differential of the heat generation (NDHG) phenomenon, i.e., the intensity of the heat generation decreases with increasing bias voltage, is obviously enhanced as compared to that in single-level QD system. The NDHG can emerge in the absence of the negative differential conductance of the electric current, and occurs in different bias voltage regions when the magnetic moments of the two leads are arranged in parallel or antiparallel configurations. The characteristics of the found phenomena can be understood by examining the change of the electron number on the dot. 相似文献
16.
Photon-Assisted Heat Generation by Electric Current in a Quantum Dot Attached to Ferromagnetic Leads 下载免费PDF全文
《中国物理快报》2016,(11)
Heat generated by electric current in a quantum dot device contacting a phonon bath is studied using the nonequilibrium Green function technique.Spin-polarized current is generated owing to the Zeeman splitting of the dot level.The current's strength and the spin polarization are further manipulated by changing the frequency of an applied photon field and the ferromagnetism on the leads.We find that the associated heat by this spinpolarized current emerges even if the bias voltage is smaller than the phonon energy quanta and obvious negative differential of the heat generation develops when the photon frequency exceeds that of the phonon.It is also found that both the strength and the resonant peaks' position of the heat generation can be tuned by changing the value and the arrangement configurations of the magnetic moments of the two leads,and then provides an effective method to generate large spin-polarized current with weak heat.Such a result may be useful in designing low energy consumption spintronic devices. 相似文献
17.
Based on the Kubo formula for an electron tunneling junction, we revisit the nonequilibrium transport properties through a quantum dot. Since the Fermi
level of the quantum dot is set by the conduction electrons of the leads, we
calculate the electron current from the left side by assuming the quantum
dot coupled to the right lead as another side of the tunneling junction, and the other way round is used to calculate the current from the right side. By symmetrizing these two currents, an effective local density states on the dot can be obtained, and is discussed at high and low temperatures, respectively. 相似文献
18.
The nonequilibrium Kondo effect is studied in a molecule
quantum dot coupled asymmetrically to two ferromagnetic electrodes
by employing the nonequilibrium Green function technique. The
current-induced deformation of the molecule is taken into account,
modeled as interactions with a phonon system, and
phonon-assisted Kondo satellites arise on both sides of the usual main
Kondo peak. In the antiparallel electrode configuration, the
Kondo satellites can be split only for the asymmetric dot-lead
couplings, distinguished from the parallel configuration where
splitting also exists, even though it is for symmetric case. We also
analyze how to compensate the splitting and restore the suppressed
zero-bias Kondo resonance. It is shown that one can change the TMR
ratio significantly from a negative dip to a positive peak only by
slightly modulating a local external magnetic field, whose value is
greatly dependent on the electron--phonon coupling strength. 相似文献
19.
We construct a number(n)-resolved master equation(ME)approach under self-consistent Born approximation(SCBA)for noise spectrum calculation.The formulation is essentially non-Markovian and incorporates properly the interlay of the multi-tunneling processes and many-body correlations.We apply this approach to the challenging nonequilibrium Kondo system and predict a profound nonequilibrium Kondo signature in the shot noise spectrum.The proposed n-SCBA-ME scheme goes completely beyond the scope of the Born-Markovian master equation approach,in the sense of being applicable to the shot noise of transport under small bias voltage,in non-Markovian regime,and with strong Coulomb correlations as favorably demonstrated in the nonequilibrium Kondo system. 相似文献
20.
The quantum electronic transport through a precessing magnetic spin coupled to noncollinearly polarized ferromagnetic leads (F-MS-F) has been studied in this paper. The nonequilibrium Green function approach is used to calculate local density of states (LDOS) and current in the presence of external bias. The characters of LDOS and the electronic current are obtained. The tunneling current is investigated for different precessing angle and different configurations of the magnetization of the leads. The investigation revea/s that when the precessing angle takes θ 〈 π /2 and negative bias is applied, the resonant tunneling current appears, otherwise, it appears when positive bias is applied. When the leads are totally polarized and the precessing angel takes O, the tunneling current changes with the configuration of two leads; and it becomes zero when the two leads are antiparallel. 相似文献