首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The bonding geometry of sulfur in the cations of the title compounds, C8H11S+·CF3SO3? and C13H13S+·CF3SO3?, respectively, is similar and is independent of the ratio of the Me/Ph substituents. As expected, in both cations, the S—Ph bonds are somewhat shorter than the S—Me bonds. In both crystal structures, the interaction between cations and anions is similar.  相似文献   

2.
Solid solution Bi2Cu0.5Mg0.5Nb2O9–δ with the pyrochlore structure is synthesized by three different methods. Its structure and chemical composition are confirmed by X-ray diffraction analysis, electron microscopy, and energy-dispersive spectroscopy. The electronic-ionic processes are studied by the method of impedance spectroscopy in the frequency range from 0.3 Hz to 1.0 MHz and the temperature range from 0 to 340°С. The data are processed with the use of ZView program. Electrochemical models of samples are obtained in the form of equivalent circuits. The sign of the main charge carrier is determined by the thermo-emf method. Nonlinear effects are studied based on voltammetric characteristics. It is found that at room temperature, the charge in samples is transferred by electrons and cations (presumably, copper). In the temperature range of 260–300°С, the capacitance of samples and the specific conductivity of their volume demonstrate local minimums. Insofar as at these temperatures the oxygen conduction may occur, it is assumed that associates of anions and cations are formed. The decrease in the concentration of charge carries is confirmed by sample’s equivalent circuit into which the Gerischer impedance is introduced to enhance the accuracy. It is shown that at t = 260°С, the lifetime of charge carriers is the minimum.  相似文献   

3.
At present, hot-dipping anticorrosion metalliccoating on the surface of steel base is the main methodto prevent atmospheric corrosion of steel. With thechange of atmospheric environment, the traditionalidea of hot-dipping pure Zn cladding already does not…  相似文献   

4.
The title compound, C24H20P+·C9H17NO5S, consists of an organic monovalent cation and an organic monovalent anion, the latter being derived from the TEMPO radical (TEMPO is 2,2,6,6‐tetra­methyl­piperidin‐1‐oxyl). Two inversion‐related anions interact via two –O—H⃛O—S– hydrogen bonds, forming a dimer in which there are no short contacts between the spin centres (–N—O) of the TEMPO(OH)SO3 anions. Furthermore, no significant magnetic interaction is observed between the dimers because the dimer is surrounded by cations. These results are consistent with the paramagnetic behaviour of the title salt.  相似文献   

5.
The crystal structure of the title compound, C20H17NO4S, (I), was determined in order to compare the solution and solid‐state conformations. The mol­ecule was synthesized as a building block for incorporation into oligosaccharides comprised of conformationally restricted furan­ose residues. The furan­ose ring adopts an envelope conformation with the ring O atom displaced above the plane (an OE conformation). The pseudorotational phase angle (P) is 88.6° and the puckering amplitude (τm) is 31.5°. The C2—C1—S—C(Ph) torsion angle is ?163.2 (2)°, which places the aglycone in the exo‐anomeric effect preferred position. The C1—S—C14 bond angle is 99.02 (13)° and the plane of the cresyl moiety is oriented nearly parallel to the four in‐plane atoms of the furan­ose ring envelope. The orientation about the C4—C5 bond is gauchegauche [Bock & Duus (1994). J. Carbohydr. Chem. 13 , 513–543].  相似文献   

6.
Thermal and chemical durability studies of the phosphate glasses belonging to the binary MoO3-P2O5 and the ternary K2O-MoO3-P2O5 systems are reported. The chemical resistant attack tests carried out on the free alkaline MoO3-P2O5 glasses show that the glass associated with the P/Mo ratio 2 has the high chemical durability. It shows also a high glass transition temperature value. The above findings are interpreted in terms of the cross-link density of the glasses and the strength of the M-O bonds (M=P, Mo). The influence of K2O addition on the properties (density, T g, durability) of this binary high water resistant glass is studied. It is found that the chemical durability along with the other physical properties are reduced by the incroporation of K2O in the glass matrix. The results were explained by assuming the formation of non-bridging oxygens and weak bonds. The mechanism of the dissolution of these glasses is proposed.  相似文献   

7.
The adsorption of small molecules NO, NH3 and H2O on V2O5/TiO2 catalysts is studied with the semiempirical SCF MO method MSINDO as pre-stage for the selective catalytic reduction of NO. The mixed catalyst is represented by hydrogen-terminated cluster models. The local arrangement of the cluster atoms is in accordance with available experimental information. Partial relaxation of cluster atoms near the adsorption sites is taken into account. Calculated adsorption energies are compared with experimental literature data. Rapid convergence of computed properties with cluster size is observed. A possible reaction mechanism for the catalytic reduction of NO with NH3 and O2 is outlined.  相似文献   

8.
The title ligand, C14H14Cl4N5O2P3, is a cyclo­phosphazene lariat (PNP pivot) ether with a spiro‐cyclic 11‐membered macrocyclic ring containing two ether O and two N atoms; the phosphazene ring is nearly planar. The macrocyclic ring contains a four‐centred (trifurcate) N—H⋯O/N—H⋯N hydrogen bond, and the relative inner‐hole size of the macrocycle is ∼1.14 Å in radius. The mol­ecules are linked about inversion centres by N—H⋯N hydrogen bonds into centrosymmetric dimers.  相似文献   

9.
The title compound, C22H24N4O4, was prepared from propyl chloro­formate and 3,6‐di­phenyl‐1,2‐di­hydro‐s‐tetrazine. This reaction yields the title compound rather than di­propyl 3,6‐di­phenyl‐1,4‐di­hydro‐s‐tetrazine‐1,4‐di­carboxyl­ate. The 2,3‐di­aza­buta­diene group in the central six‐membered ring is not planar; the C=N double‐bond length is 1.285 (2) Å, and the average N—N single‐bond length is 1.401 (3) Å, indicating a lack of conjugation. The ring has a twist conformation, in which adjacent N atoms lie 0.3268 (17) Å from the plane of the ring. The mol­ecule has twofold crystallographic symmetry.  相似文献   

10.
Summary. A review of the recent developments in the study and understanding of room temperature ionic liquids are given. An intimate picture of how and why these liquids are not crystals at ambient conditions is attempted, based on evidence from crystallographical results combined with vibrational spectroscopy and ab-initio molecular orbital calculations. A discussion is given, based mainly on some recent FT-Raman spectroscopic results on the model ionic liquid system of 1-butyl-3-methylimidazolium ([C4 mim][X]) salts. The rotational isomerism of the [C4 mim]+ cation is described: the presence of anti and gauche conformers that has been elucidated in remarkable papers by Hamaguchi et al. Such presence of a conformational equilibrium seems to be a general feature of the room temperature liquids. Then the “localized structure features” that apparently exist in ionic liquids are described. It is hoped that the structural resolving power of Raman spectroscopy will be appreciated by the reader. It is of remarkable use on crystals of known different conformations and on the corresponding liquids, especially in combination with modern quantum mechanics calculations. It is hoped that these interdisciplinary methods will be applied to many more systems in the future. A few examples will be discussed.  相似文献   

11.
The structure of the adduct of eucarvone with nitro­so­benzene, C16H19NO2, is reported. The [3.2.2] bicyclic system corresponds to two seven‐membered rings in boat and distorted chair conformations and a six‐membered ring that adopts a distorted boat conformation. No conjugation is observed between the phenyl group and the N—O system. The packing is directed mainly by a C?O hydrogen bond, C—H?O‐(1 ? x, ?y, z) and by intermolecular C—H?π interactions.  相似文献   

12.
The structure of the title compound, C22H24N2O9S2, is described. This compound consists of a sugar ring and a heterocyclic base linked unusually by an S atom. The sugar is in a 4C1 chair conformation and forms dihedral angles of 49.54 (4) and 33.42 (5)° with the thia­diazole and phen­yl rings, respectively. The S atom occupies an equatorial position of the sugar ring and lies 1.807 (2) Å out of the corresponding mean plane.  相似文献   

13.
The crystal structure of the title compound, C20H23N3O7, consists of relatively isolated mol­ecules. The substituted 1,4‐di­hydro­pyridine ring adopts a flattened boat conformation. Both ester groups, at positions 3 and 5, have cis,cis geometry. The phenyl ring is nearly planar and is approximately perpendicular to the 1,4‐di­hydro­pyridine ring (dihedral angle 87.70°).  相似文献   

14.
15.
In the title compound, 4‐amino‐1‐(2‐deoxy‐β‐d ‐eythro‐pento­furan­osyl)‐3‐vinyl‐1H‐pyrazolo­[3,4‐d]­pyrimidine monohydrate, C12H15N5O3·H2O, the conformation of the gly­cosyl bond is anti. The furan­ose moiety is in an S conformation with an unsymmetrical twist, and the conformation at the exocyclic C—C(OH) bond is +sc (gauche, gauche). The vinyl side chain is bent out of the heterocyclic ring plane by 147.5 (5)°. The three‐dimensional packing is stabilized by O—H·O, O—H·N and N—H·O hydrogen bonds.  相似文献   

16.
The crystal structure of the title compound, C15H14N2O2·H2O, is in the keto tautomeric form and the configuration at the azomethine C=N double bond is E. The mol­ecule is non‐planar, with a dihedral angle of 27.3 (1)° between the aromatic rings. The crystal structure is stabilized by extensive hydrogen bonding involving the water mol­ecule and hydrazone moiety.  相似文献   

17.
Additives to MgB2 can improve the superconducting functional characteristics, such as critical current density (J c) and irreversibility field (H irr). Recently, we have shown that repagermanium (C6H10Ge2O7) is an effective additive, enhancing both J c and H irr. To look into details of the processes taking place during the reactive sintering, a thermal analysis study (0.167 K s?1, in Ar) is reported. We used differential scanning calorimetry between 298 and 863 K and simultaneous thermogravimetric—differential thermal analysis between 298 and 1233 K. Samples were mixtures of powders with composition 97 mol% MgB2 and 3 mol% C6H10Ge2O7. Up to 863 K, repagermanium decomposes by multiple steps and forms amorphous phases. A reaction with MgB2 is not observed. Above this temperature, partial decomposition of MgB2 occurs. Crystalline Ge and MgO are detected before formation of Mg2Ge and MgB4, when temperature approaches the melting point of Ge (1211 K). Carbon substitution for boron in the crystal lattice of MgB2 is observed for samples heated above 863 K. The amount of substitutional C does not significantly change with temperature.  相似文献   

18.
The title compound, C22H22O4, is the product of the Diels–Alder reaction of anthracene with fumaric acid diethyl ester. The molecular C2 symmetry is nearly fulfilled in the crystal. Only the terminal torsion angles about the O—CH2 groups show significant differences.  相似文献   

19.
Within a temperature range of 120–330 K, 7Li NMR spectra in Li0.6CoO2 are obtained. It is shown that as the temperature increases, both smooth and stepwise variation of 7Li NMR contact shifts occurs. The observed effects are explained by the occupation of the excited levels of cobalt ions. The stepwise change of the resonance line width depending on the temperature is revealed. It is driven by the features of the diffusive motion of lithium ions. The calculation of the 1H NMR line shape provides the determination of the ratio of one-, two-, and three-spin proton clusters in Li0.6CoO2·xH2O.  相似文献   

20.
The title compound, C14H16N4O4, adopts the anti conformation at the gly­cosylic bond [χ−117.1 (5)°]. The sugar pucker of the 2′‐deoxy­ribo­furan­osyl moiety is C2′‐endo–C3′‐exo, 2T3 (S‐type). The orientation of the exocyclic C4′—C5′ bond is +sc (gauche). The propynyl group is linear and coplanar with the nucleobase moiety. The structure of the compound is stabilized by several hydrogen bonds (N—H⋯O and O—H⋯O), leading to the formation of a multi‐layered network. The nucleobases, as well as the propynyl groups, are stacked. This stacking might cause the extraordinary stability of DNA duplexes containing this compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号