共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
湍流边界层中重粒子弥散的随机模型 总被引:1,自引:0,他引:1
在重粒子轨道模型的基础上,引入了Saffman力,并考虑了粒子-固壁碰撞和粒子-粒子碰撞的影响,建立了重粒子运动方程,耦合湍流脉动的随机方程,发展了重粒子弥散的随机模型,并在湍流边界层中考察该模型.将数值计算结果与实验结果进行比较,同时考察了Saffman力和粒子碰撞对计算结果的影响. 相似文献
3.
The energy gradient method has been proposed with the aim of better
understanding the mechanism of flow transition from laminar flow to
turbulent flow. In this method, it is demonstrated that the transition
to turbulence depends on the relative magnitudes of the transverse gradient
of the total mechanical energy which amplifies the disturbance and the energy
loss from viscous friction which damps the disturbance, for given imposed
disturbance. For a given flow geometry and fluid properties, when the maximum
of the function $K$ (a function standing for the ratio of the gradient of total
mechanical energy in the transverse direction to the rate of energy loss due to
viscous friction in the streamwise direction) in the flow field is larger than a
certain critical value, it is expected that instability would occur for some
initial disturbances. In this paper, using the energy gradient analysis, the
equation for calculating the energy gradient function $K$ for plane Couette flow
is derived. The result indicates that $K$ reaches the maximum at the moving walls.
Thus, the fluid layer near the moving wall is the most dangerous position to generate
initial oscillation at sufficient high $\operatorname{Re}$ for given same level of
normalized perturbation in the domain. The critical value of $K$ at turbulent transition,
which is observed from experiments, is about 370 for plane Couette flow when two walls
move in opposite directions (anti-symmetry). This value is about the same as that for
plane Poiseuille flow and pipe Poiseuille flow (385-389). Therefore, it is concluded
that the critical value of $K$ at turbulent transition is about 370-389 for wall-bounded
parallel shear flows which include both pressure (symmetrical case) and shear driven
flows (anti-symmetrical case). 相似文献
4.
三种湍流模式数值模拟直角弯管内三维分离流动的比较 总被引:10,自引:0,他引:10
采用有限体积法数值离散雷诺时均Navier Stokes方程,模拟了方形截面90°大曲率弯曲管道内的三维湍流流动.用3种湍流模式(标准k-ε湍流模式、RNG k-ε湍流模式、Realizable k-ε湍流模式)求解该问题.给出了数学模型和计算结果,并与实验数据进行了比较.结果表明,采用RNG k-ε湍流模式并结合两层壁面模型的处理,能有效准确地求解强曲率影响的管道内及近壁区湍流的流动. 相似文献
5.
6.
7.
喷雾湍流燃烧过程中,液滴、湍流和化学反应之间强烈耦合,物理化学机理非常复杂。本文将速度-标量-频率联合概率密度函数JPDF输运方程方法应用于两相喷雾湍流反应流问题,利用火焰面模型解耦流动和化学反应动力学的耦合关系,建立起相应的数值计算模型。采用Monte-Carlo数值计算方法,针对澳大利亚悉尼大学Masri等人以甲醇为燃料所进行的湍流喷雾燃烧值班火焰这一试验进行了数值模拟,通过与Fluent下的计算结果及试验结果的对比分析,验证了本文所建模型的准确性。 相似文献
8.
A mathematical model was developed to simulate two-phase gas-dispersed flow moving through a pipe with axisymmetric sudden
expansion. In the model, the two-fluid Euler approach was used. The model is based on solving Reynolds-averaged Navier — Stokes
equations for a two-phase stream. In calculating the fluctuating characteristics of the dispersed phase, equations borrowed
from the models by Simonin (1991), Zaichik et al. (1994), and Derevich (2002) were used. Results of a comparative analysis
with previously reported experimental and numerical data on two-phase flows with separation past sudden expansion in a plane
channel and in a pipe are given.
This work was supported by the President of the Russian Federation through the Foundation for Young Candidates of Sciences
under Grant MK-186.2007.8 and by the Russian Foundation for Basic Research (Grants Nos. 05-08-33586 and 06-08-00967). 相似文献
9.
湍流扩散火焰局部熄火和再燃现象的PDF模拟 总被引:2,自引:0,他引:2
对一个值班湍流CH4/O2/N2射流扩散火焰(Sandia Flame D)进行了数值模拟研究.所采用的数学物理模型包括双尺度的k—ε湍流模型,标量联合的概率密度函数(PDF)输运方程方法,甲烷氧化的ARM简化化学反应机理(包含16种组分,12步总包反应)和欧几里德最小生成树(EMST)小尺度混合模型.将计算结果和实验数据进行了比较,不仅对于平均量,对于标量的散点分布和条件概率密度分布也是如此.计算结果表明文中采用的模型不仅能够预测宏观的火焰结构,而且预测了湍流燃烧中复杂的局部熄火和再燃过程. 相似文献
10.
Ducts with a square cross-section are widely used in many industrial applications because of their high compactness, easy forming, and low pressure drop. But the thermal performance of a duct will be reduced when the circular cross-sectional shape is not used. In this study, the convective heat transfer for a CuO/water nanofluid through a square cross-section duct in the turbulent flow regime has been investigated. The Nusselt number of nanofluids for different nanoparticle concentrations, as well as various Peclet numbers, was obtained. The results show considerable enhancement in the heat transfer coefficient and Nusselt number by increasing the nanoparticle concentrations as well as the Peclet number. 相似文献
11.
H. I. Abu-Mulaweh 《实验传热》2013,26(2):117-127
The effects of backward-facing and forward-facing steps on a turbulent buoyancy-dominated mixed-convection flow over a flat plate are examined experimentally. Air velocity and temperature distributions and their turbulent fluctuations are measured simultaneously by using a two-component laser-Doppler velocimeter and a cold wire anemometer, respectively. The experiment was carried out for a step (backward-facing/forward-facing) height of 22 mm, a temperature difference, ΔT, of 30°C between the heated walls and the free-stream air (corresponding to a local Grashof number Gr xi = 6.45 × 1010), and a free-stream velocity of 0.48 m/s. It was found that the introduction of backward- and forward-facing steps increases the turbulence intensity of the velocity and temperature fluctuations downstream of the step. The present results also reveal that the maximum local Nusselt number occurs in the vicinity of the reattachment zone, and it is approximately twice for the case of the backward-facing step and three times for the case of the forward-facing step than that of the flat plate value at similar flow and thermal conditions. 相似文献
12.
13.
M. M. K. Bhuiya J. U. Ahamed M. A. R. Sarkar B. Salam H. H. Masjuki M. A. Kalam 《实验传热》2013,26(4):301-322
An experimental investigation has been carried out for turbulent flow through a tube with perforated strip inserts. Strips were of mild steels with circular holes of different diameters. Flow varies, with ranging Reynolds numbers from 15,000 to 47,000. Air velocity, tube wall temperatures, and pressure drops were measured for a plain and strip-inserted tube. The heat transfer coefficient and friction factor were found to be 2.80 times and 1.8 times, respectively, that of the plain tube. The heat transfer performance was evaluated and found to be 2.3 times that of the plain tube based on constant blower power. 相似文献
14.
15.
分析了色散棱镜的特性及其顶角设计问题。讨论了色散棱镜和扩束棱镜在布鲁斯特角入射状态下,可组合使用的形式及单程角色散。提出将色散棱镜与扩束棱镜组合使用,可减少色散棱镜个数而获得更大角色散的方法。并据此设计了两个色散棱镜组,在Ti∶S激光器中得到实际使用。 相似文献
16.
Thermal dispersion model has been used here to simulate heat transfer of water–Al2O3 nanofluid. A new form for dispersion thermal conductivity has been introduced in which non-uniform concentration distribution is applied on the model. It was observed that the non-uniformity of concentration increases at greater Reynolds numbers and average concentrations. An experimental set-up was made, and an experimental study was conducted to find the empirical coefficient in the dispersion thermal conductivity. The obtained results show that the developed dispersion model is able to properly simulate heat transfer of the nanofluid and provides more accurate results in comparison with a homogenous model. 相似文献
17.
粒子群优化算法在自适应偏振模色散补偿中的性能研究 总被引:1,自引:0,他引:1
反馈控制算法是偏振模色散的自适应补偿器的关键组成部分,将粒子群优化算法(PSO)引入到偏振模色散自适应补偿系统中。该算法的优点是具有快速收敛到全局最佳值的能力、避免搜索陷入局部极值的能力、抗噪声能力和多自由度控制能力。理论上分析了粒子群优化算法的两个分类———全局邻居结构粒子群优化(GPSO)和局部邻居结构粒子群优化(LPSO)在搜索全局最佳值方面的能力优劣,给出了局部邻居结构粒子群优化算法成功率达100%的三种邻居拓扑结构。实验表明:在补偿一阶偏振模色散时,全局邻居结构和局部邻居结构搜索全局最佳的成功率都能满足要求,全局邻居结构算法收敛速度快。而在补偿二阶偏振模色散时,全局邻居结构成功率降低,而局部邻居结构仍可以满足要求。 相似文献
18.
燃煤电厂亚微米颗粒物排放是造成大气环境污染和影响人体健康的重要因素。本文搭建亚微米颗粒湍流团聚实验平台,通过场发射扫描电镜(FESEM)对亚微米颗粒的团聚形貌进行微观表征以及扫描电迁移率粒径谱仪(SMPS)对亚微米颗粒团聚前后的粒径分布特性进行宏观测量。结果表明:亚微米颗粒湍流团聚形成多分叉颗粒树聚团结构,进口流速为0.8?5.3m/s条件下,PM1和PM0.1的脱除效率分别为5.6%?18.6%和7.0%?21.4%,且PM1和PM0.1的脱除效率曲线随速度变化呈现二次函数规律。 相似文献
19.
20.
In this Letter, we find that the Kolmogorov scaling law is no longer valid when the flow is submitted to strong dilatational effects caused by high temperature gradients. As a result, in addition to the nonlinear time scale, there is a much shorter “temperature gradients” time scale. We propose a model that estimates the time scale of the triple decorrelation incorporating the influences of the temperature gradient. The model agrees with the results from the thermal large-eddy simulations of different Reynolds numbers and temperature gradients. This Letter provides a better understanding of the very anisothermal turbulent flow. 相似文献