首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of In:Nd:LiNbO3 crystals were grown by Czochralski technique and were made into waveguide substrates. The optical damage resistance of the In:Nd:LiNbO3 waveguide substrates was characterized by measurement of the holographic method. The optical damage resistance of In (3.0 mol%):Nd:LiNbO3 was much higher than that of other In:Nd:LiNbO3. The ultraviolet‐visible (UV‐Vis) absorption spectra the In:Nd:LiNbO3 crystals were measured and investigated. The structure defects were discussed in this paper to explain the enhance of the optical damage resistance in the In:Nd:LiNbO3 crystals. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Zn:Mn:Fe:LiNbO3 crystals were prepared by Czochralski technique. Its microstructure was measured and analyzed by UV‐Vis absorption spectra. The optical damage resistance of Zn:Mn:Fe:LiNbO3 crystals was characterized by the transmitted beam pattern distortion method. It increases remarkably when the concentration of ZnO is over a threshold concentration. Its value in Zn(7.0 mol%):Mn:Fe:LiNbO3 crystal is about three orders of magnitude higher that in the Mn:Fe:LiNbO3 crystal. The dependence of the defects on the optical damage resistance was discussed. The non‐volatile holographic storage was realized in all crystals, and the sensitivity of the Zn(7.0 mol%):Mn:Fe:LiNbO3 crystal is much higher than that of others. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
A series of Zn:In:Fe:LiNbO3 crystals were prepared by Czochralski method. The crystal composition and defect structure were analyzed by ICP‐OE/MS, UV–vis and IR spectroscopy. The results show that with increasing In3+ doping concentration in melt, the segregation coefficients of both Zn and In ions decrease. The optical damage resistance of Zn:In:Fe:LiNbO3 crystals was studied by the transmitted beam pattern distortion method. It is found that the optical damage resistance of Zn:In(3mol%):Fe LiNbO3 crystals is two orders of magnitude higher than that of Zn:Fe:LiNbO3. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
A series of Sc:Er:LiNbO3 crystals have been grown by Czochralski method. Their ultraviolet‐visible (UV‐Vis) absorption spectra was measured and discussed to investigate their defect structure. The optical damage resistance of Sc:Er:LiNbO3 crystals was characterized by the transmitted beam pattern distortion method. It increases remarkably when the concentration of Sc2O3 exceeds a threshold concentration. The optical damage resistance of Sc (3.0mol %):Er:LiNbO3 is much higher than that of the Er:LiNbO3. The intrinsic and extrinsic defects were discussed to explain the enhance of the optical damage resistance in the Sc:Er:LiNbO3 crystals. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
A series of In:Yb:Er:LiNbO3 crystals have been grown. The UV‐Vis absorption spectra and Infrared (IR) transmission spectra were measured and discussed in terms of the spectroscopic characterizations and the defect structure of the In:Yb:Er:LiNbO3 crystals. The optical damage resistance was characterized by the transmitted beam pattern distortion method. The optical damage resistance of In (3.0mol %):Yb:Er:LiNbO3 crystal is one order of magnitude higher than that of other crystal. The dependence of the optical damage resistance on the defect structure was studied. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
1 mol%, 2 mol%, 3 mol%, 4 mol% and 5 mol% In3+ doped LiNbO3 crystals were grown by the Czochralski method, respectively. Oxidized treatment of some crystals was carried out. The infrared transmission spectra and photo‐damage resistance of the samples were measured. The results showed that the OH absorption peaks of In(3mol%):LiNbO3, In(4mol%):LiNbO3 and In(5mol%):LiNbO3 crystals were located at about 3508 cm‐1, while those of In(1mol%):LiNbO3 and In(2mol%):LiNbO3 crystals were located at about 3484cm‐1. When the doped In3+ concentration reached its threshold in LiNbO3 crystal, photo‐damage resistance of In:LiNbO3 crystals was two orders of magnitude higher than that of pure LiNbO3 crystal. The experimental results of the second harmonic generation (SHG) showed that the phase matching temperatures of In:LiNbO3 crystals were lower than those of Zn:LiNbO3 and Mg:LiNbO3 crystals and the SHG efficiency reached 38%. Oxidization treatment was also found to make the dark trace resistance of crystals increase. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Mg:Ce:Fe:LiNbO3 crystals were prepared with fixed concentrations of Fe2O3 and CeO2, and differing concentrations of MgO by the Czochralski technique. Their infrared transmission spectra were measured in order to investigate their defect structures and their optical damage resistance was characterized by the photoinduced birefringence change and transmission facula distortion method. The optical damage resistance of Mg:Ce:Fe:LiNbO3 crystals increases remarkably when the concentration of MgO exceeds a threshold concentration. The dependence of the optical damage resistance on the defect structure of Mg:Ce:Fe:LiNbO3 crystals is discussed in detail. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Influence of defect structure on the infrared transmission spectra of OH in Zn:Fe:LiNbO3 crystals with various ZnO concentration and different Li/Nb ratios was investigated. It indicates that above the Zn concentration threshold the OH absorptions bands successively shift from 3482cm‐1 to 3504cm‐1 and 3529cm‐1. The intensity of the 3504cm‐1 band increases with ZnO concentration increasing. The optical damage resistance of the Zn:Fe:LiNbO3 crystals increases rapidly when the ZnO concentration exceeds a threshold value. This result contributed to the site alteration from the Li sites to Nb sites due to Zn‐doping in crystal. © 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim  相似文献   

9.
Mg: Er: LiNbO3 crystals were grown by the Czochralski technique with various concentrations of MgO = 2 mol%, 4 mol%, 6 mol% and the fixed concentration of Er2O3= 1 mol% in the melt, and the 8 mol%Mg: 1 mol%Er: LiNbO3 crystal was fabricated by the Czochralski technique with special technology process. The crystals were treated by polarization, reduction and oxidation. The segregation coefficients of Mg2+ and Er3+ in Mg: Er: LiNbO3 crystals were measured by X‐ray fluorescence spectrograph, as well as the crystal's defect structure and optical properties were analyzed by the UV‐Vis, IR and fluorescent spectroscopy. The pump wavelength and the surge wavelength were determined. Using m‐line method tested optical damage resistance of those crystals, the results show that photodamage threshold of Mg: Er: LiNbO3 crystals are higher than that of Er: LiNbO3 crystal, and the oxidation treat could enhance the photodamage resistant ability of crystals while the reduction treat could depress the ability. The optical damage resistance of 8 mol%Mg: 1 mol%Er: LiNbO3 crystal was the strongest among the samples, which was two orders magnitude higher than that of 1 mol%Er: LiNbO3 crystal. The dependence of the optical properties on defect structure of Mg: Er: LiNbO3 crystals was discussed. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
In:Fe:Cu:LiNbO3 crystals were grown in air by the Czochralski technique with various [Li]/[Nb] ratios of 0.946, 1.050, 1.200, and 1.380 in melt. Based on the ICP‐AES (inductively coupled plasma atomic emission spectrometry) analyzed results, the chemical formula of the triple‐doped In:Fe:Cu:LiNbO3 crystals were obtained. It can be seen that the near‐stoichiometric ratio value is between 1.050 and 1.200 for our samples. The optical damage resistance of In:Fe:Cu:LiNbO3 crystals was characterized by changes in light‐induced birefringence and it increases with the increasing of [Li]/[Nb] ratios. The dependence of the optical damage resistance on the defect structure of In:Fe:Cu:LiNbO3 crystals is discussed in detail based on the obtained chemical formulas. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Hf:Fe:LiNbO3 crystals were grown in air by the Czochralski technique with various ratios of [Li]/[Nb]=0.94, 1.05, 1.20 in melt. The defect structure and location of doped ions were analyzed by the UV‐visible and infrared spectroscopy. The optical damage resistance ability of Hf:Fe:LiNbO3 crystals was measured by the photo‐induced birefringence change and the transmitted light spot distortion method. The results show that the optical damage resistance ability of Hf:Fe:LiNbO3 crystals is enhanced with the increase of the [Li]/[Nb] ratio. The dependence of the optical damage resistance of Hf:Fe:LiNbO3 crystals on the defect structure is discussed in detail. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Hf:Fe:LiNbO3 crystals were grown in air by the Czochralski technique with various [Li]/[Nb] ratios ([Li]/[Nb]=0.94, 1.05, 1.20) in melt. The defect structure and location of doped ions were analyzed by the UV‐visible absorption spectra. The optical damage resistance of Hf:Fe:LiNbO3 crystals was investigated by the photoinduced birefringence change and the transmitted light spot distortion method. The results show that the optical damage resistance ability of Hf:Fe:LiNbO3 crystals decreases with the increase of the [Li]/[Nb] ratio. The dependence of the optical damage resistance of Hf:Fe:LiNbO3 crystals on the defect structure is discussed in detail. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The pure congruent LiNbO3, Er:LiNbO3 and Zn,Er co‐doped Li‐rich LiNbO3 crystals were grown by Czochralski method. The X‐ray diffraction method and ultraviolet‐visible absorption spectra of the crystals were used to analyze the structure of the crystals. The photo‐damage ability resistance of the crystals was measured. The Zn,Er co‐doped Li‐rich LiNbO3 crystals show a decrease in lattice constant values, a shift in absorption edge of ultraviolet‐visible absorption spectra towards shorter wavelength, and three orders of magnitude increase in photo‐damage resistance compared to congruent LiNbO3 crystal. The intrinsic and extrinsic defects are discussed to explain the enhance of the photo‐damage ability resistance  相似文献   

14.
Codoped Hf: Er: LiNbO3 crystals have been grown by the Czochralski technique. Defect structures of the crystals were analyzed by IR absorption spectra, and the compositions of the crystals were measured by X‐ray fluorescent spectrograph. A new OH‐associated vibrational peak at 3492 cm–1 was revealed in 6 mol % Hf: 1 mol % Er: LiNbO3 crystal. It was attributed to (HfNb)‐OH‐(ErNb)2– defect centers. The Er3+ concentrations in crystals gradually decreased with the increase of the codoped Hf4+ concentrations in the melts. The emission characteristics of the crystals were investigated by the fluorescence spectrum. It was found that the luminescent intensity in codoped 6 mol % Hf: 1 mol % Er: LiNbO3 crystal was 3.5 times stronger than that in single doped 1 mol % Er: LiNbO3 crystal. The luminescent enhancement effect was successfully explained on the basis of defect structure of the crystals. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Zr: LiNbO3 crystals has been grown. The crystal composition and phase are analyzed by X‐ray diffration. The optical damage resistance ability of Zr: LiNbO3 crystals is studied by the Sénarmont compensation method and the transmitted beam pattern distortion method. The saturated value of the birefringence change of 6 mol% Zr: LiNbO3 crystal is 1.01×10‐4, which is seven times smaller than that of congruent pure LiNbO3 crystal. The results of UV‐Visible and IR absorption spectra of Zr: LiNbO3 crystals powerfully confirm that the optical damage resistance threshold concentration of the Zr4+ ions doped in LiNbO3 crystals is about 6 mol% in the melt. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The optical absorption spectra of LiNbO3 (LN), Fe:LiNbO3 (Fe:LN), and Zn:Fe:LiNbO3 (Zn:Fe:LN) single crystals grown by Bridgman method were measured and compared. The absorption characteristics of the samples and the effects of growth process conditions on the absorption spectra were investigated. The Fe, Zn and Li concentrations in the crystals were analyzed by inductively coupled plasma (ICP) spectrometry. The results indicated that the overall Fe ion and Fe2+ concentration in Fe:LN and Zn:Fe:LN crystals increased along the growing direction. The incorporation of ZnO in Fe:LN crystal induced increase of Fe2+ in the crystal. Among Fe‐doped and Zn:Fe‐codoped LN single crystals, 3 mol% ZnO doped Fe:LN had a biggest change of Fe2+ ion concentration from bottom to top part of crystal. The effects of technical conditions (atmosphere and thermal history) on Fe2+ ion concentration were discussed. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Growth of undoped and Cr doped (0.1, 0.25 and 0.5 mol % Cr2O3) congruently‐ melting‐composition LiNbO3 single crystals by Czochralski technique is reported. Chromium doping was optimised to get crystals with potential for an integrated, broadband, tunable laser in the 700‐1100 nm spectral range. Typical sizes of the grown crystals are 25‐30 mm in diameter and 30‐40 mm in length. Symmetrical and sharp conoscopy pictures confirm the optical homogeneity of the crystals. Optical transmission was recorded for both undoped and doped crystals. 70% transmittance was observed. The grown crystals have reasonably good laser damage threshold. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
6.0 mol. % ZnO doped LiNbO3 crystals were grown by Czochralski technique. Various Li/Nb mole ratios of 0.942, 0.970, 1.000, and 1.020 were used to prepare the starting materials. Second harmonic generation (SHG) experimental results show that the phase matching temperature increases near linearly with the increasing of Li/Nb ratio, and the SHG efficiency is enhanced by the Zn doping and the increasing of Li/Nb ratio. The intrinsic and extrinsic defects are discussed in this paper to explain the SHG behavior and photo‐damage resistance in the Zn doped Li‐rich LiNbO3 crystals.  相似文献   

19.
In this paper, photorefractive properties of Mg:Ce:Cu:LiNbO3 crystals were studied. The crystals doped with different concentration of Mg ions have been grown by the Czochralski method. Mg concentrations in grown crystals were analyzed by an inductively coupled plasma optical emission spectrometry (ICP‐OE/MS). The crystal structures were analyzed by the X‐ray powder diffraction (XRD), ultraviolet‐visible (UV‐Vis) absorption spectra and infrared (IR) transmitatance spectra. The photorefractive properties of crystals were experimentally studied by using two‐beam coupling. In this experiment we determined the writing time, maximum diffraction efficiency and the erasure time of crystals samples with He‐Ne laser. The results showed that the dynamic range (M/#), sensitivity (S) and diffraction efficiency (η) were dependent on the Mg doping concentration, and the Mg(4.58mol%):Ce:Cu:LiNbO3 crystal was the most proper holographic recording media material among the six crystals studied in the paper. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Mg:Ru:Fe:LiNbO3 crystals with various doping concentration of MgO have been grown by Czochralski method. The type of charge carriers and photorefractive properties in Mg:Ru:Fe:LiNbO3 crystals were measured by two‐wave coupling method using Kr+ laser (476 nm) and He‐Ne laser (633 nm) as light sources. We found that holes were the dominant charge carriers under blue light irradiation while electrons were the dominant charge carriers under red light irradiation. Mg2+ ions behaved no longer as damage resistant, but promoter to the photorefractive properties at 476 nm wavelength. The photorefractive properties under blue light improved with the increase concentration of Mg2+ ions. The enhancement mechanisms of the blue photorefractive were suggested. Experimental results definitely showed that Mg‐doped two‐centre Ru:Fe:LiNbO3 was a promising blue photorefraction material for holographic volume storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号