首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the properties of the heat flow generated by electric current in a quantum dot(QD) molecular sandwiched between two ferromagnetic leads. The heat is exchanged between the QD and the phonon reservoir coupled to it. We find that when the leads' magnetic moments are in parallel configuration, the total heat generation is independent on the leads' spin-polarization regardless of the magnitude of the intradot Coulomb interaction. This behavior is similar to that of the electronic current. In the antiparallel configuration, however, the influences of the leads' ferromagnetism on the heat generation are quite different from those on the electric current. Under the conditions of weak intradot Coulomb interaction and small bias voltage, the heat generation is monotonously suppressed by increasing leads' spin-polarization.Whereas for sufficient large intradot Coulomb interaction and bias voltage, the heat generation shows non-monotonous behavior due to the electron-phonon interaction and the spin accumulation induced on the dot. Furthermore, the magnitude of the negative differential of the heat generation previously found in a QD connected to nonmagnetic leads can be weakened by the increase of the spin-polarization of the ferromagnetic leads.  相似文献   

2.
Heat current exchanged between a two-level quantum dot (QD) and a phonon reservoir coupled to it is studied within the nonequilibrium Green's function method. We consider that the QD is connected to the left and right ferromagnetic leads. It is found that the negative differential of the heat generation (NDHG) phenomenon, i.e., the intensity of the heat generation decreases with increasing bias voltage, is obviously enhanced as compared to that in single-level QD system. The NDHG can emerge in the absence of the negative differential conductance of the electric current, and occurs in different bias voltage regions when the magnetic moments of the two leads are arranged in parallel or antiparallel configurations. The characteristics of the found phenomena can be understood by examining the change of the electron number on the dot.  相似文献   

3.
Heat generated by electric current in a quantum dot device contacting a phonon bath is studied using the nonequilibrium Green function technique.Spin-polarized current is generated owing to the Zeeman splitting of the dot level.The current's strength and the spin polarization are further manipulated by changing the frequency of an applied photon field and the ferromagnetism on the leads.We find that the associated heat by this spinpolarized current emerges even if the bias voltage is smaller than the phonon energy quanta and obvious negative differential of the heat generation develops when the photon frequency exceeds that of the phonon.It is also found that both the strength and the resonant peaks' position of the heat generation can be tuned by changing the value and the arrangement configurations of the magnetic moments of the two leads,and then provides an effective method to generate large spin-polarized current with weak heat.Such a result may be useful in designing low energy consumption spintronic devices.  相似文献   

4.
We investigate the linear and nonlinear transport through a single level quantum dot connected to two ferromagnetic leads in Kondo regime, using the slave-boson mean-field approach for finite on-site Coulomb repulsion. We find that for antiparallel alignment of the spin orientations in the leads, a single zero-bias Kondo peak always appears in the voltage-dependent differential conductance with peak height going down to zero as the polarization grows to P=1. For parallel configuration, with increasing polarization from zero, the Kondo peak descends and greatly widens with the appearance of shoulders, and finally splits into two peaks on both sides of the bias voltage around P~0.7 until disappearing at even larger polarization strength. At any spin orientation angle θ, the linear conductance generally drops with growing polarization strength. For a given finite polarization, the minimum linear conductance always appears at θ=π.  相似文献   

5.
Heat current exchanged between a two-level quantum dot(QD) and a phonon reservoir coupled to it is studied within the nonequilibrium Green's function method. We consider that the QD is connected to the left and right ferromagnetic leads. It is found that the negative differential of the heat generation(NDHG) phenomenon,i.e.,the intensity of the heat generation decreases with increasing bias voltage,is obviously enhanced as compared to that in single-level QD system. The NDHG can emerge in the absence of the negative differential conductance of the electric current,and occurs in different bias voltage regions when the magnetic moments of the two leads are arranged in parallel or antiparallel configurations. The characteristics of the found phenomena can be understood by examining the change of the electron number on the dot.  相似文献   

6.
We have studied the thermoelectric properties through ferromagnetic leads-QD coupled system(F-QD-F)in the Kondo regime by nonequilibrium Green's functions method. The spin-flip effect induced by ferromagnetic leads and Kondo effect influence the thermoelectric properties significantly. The peak-valley structure emerges at the low temperature due to Kondo resonance, and the peak-valley structure also relies on the polarization angle θ, the spindependent linewidth function Γγσ and the energy level of QD ?d. Novel resonant peak also emerges in the curve of ZTc versus polarization angle θ. The Kondo effect suppresses the figure of merit ZTc and the spin-dependent figure of merit ZTs. In addition, the spin-dependent figure of merit ZTs is relate with the gap between Γγ↑and Γγ↓.  相似文献   

7.
We study the heat generation in quantum dot system with Fano resonance by nonequilibrium Green's functions method. The Fano resonance influences the heat generation significantly. As ξ increases, the heat generation decreases gradually. From the study of Q-eV curves, we find that the linewidth function Γ has huge influence on the heat generation. The Q-eV curves display obvious steps when the linewidth function Γ is small. However, these steps disappear with Γ increasing. As the source-drain bias eV increases, the Q-eVg curves also display interesting behaviors.  相似文献   

8.
The energy spectra of low-lying states of an exciton in a single and a vertically coupled quantum dots arestudied under the influence of a perpendicularly applied magnetic field. Calculations are made by using the method ofnumerical diagonalization of the Hamiltonian within the effective-mass approximation. We also calculated the bindingenergy of the ground and the excited states of an exciton in a single quantum dot and that in a vertically coupledquantum dot as a function of the dot radius for different values of the distance and the magnetic field strength.  相似文献   

9.
We investigate the heat generation induced by electrical current in a normal-metal-molecular quantum dot-superconductor (NDS) system. By
using nonequilibrium Green's function method, the heat generation Q is derived and studied in detail. The superconducting lead influences
the heat generation significantly. An obvious step appears in Q-eV characteristics and the location of this step is related with the phonon frequency ω0. The heat generations exhibit very different behaviour in the condition eV? due to different tunneling mechanism. From the study of Q-eVg curves, there is an extra peak as eV>?. The difference in this two cases is also shown in Q-ω0 curve, an extra peak emerges as eV>?.  相似文献   

10.
We have studied the thermoelectric properties through ferromagnetic leads-QD coupled system (F-QD-F) in the Kondo regime by nonequilibrium Green's functions method. The spin-flip effect induced by ferromagnetic leads and Kondo effect influence the thermoelectric properties significantly. The peak-valley structure emerges at the low temperature due to Kondo resonance, and the peak-valley structure also relies on the polarization angle θ, the spin-dependent linewidth function Γγσ and the energy level of QD εd. Novel resonant peak also emerges in the curve of ZTc versus polarization angle θ. The Kondo effect suppresses the figure of merit ZTc and the spin-dependent figure of merit ZTs. In addition, the spin-dependent figure of merit ZTs is relate with the gap between Γγ↑ and Γγ↓.  相似文献   

11.
We study the heat generation by an electric current in a quantum dot (QD) molecular coupled to a single-model phonon bath in the Coulomb blockade regime. It is found that when the system is driven out of equilibrium by the thermal bias applied across the two terminals of the structure, the heat flowing between the QD and the phonon bath can be very small for one direction of the thermal bias, while it becomes quite large when the corresponding direction of the thermal bias is reversed. The device thus operates as a heat rectifier or heat diode. Moreover, the heat generation can be suppressed to negative values by the thermal bias. We emphasize that the above-mentioned two effects are beyond the reach of the usual electric bias.  相似文献   

12.
We study a two-electron system in a double-layer quantum dot under a magnetic field by means of the exact diagonalization of the Hamiltonian matrix.We find that discontinuous ground-state energy transitions are induced by an external magnetic field in the case of strong coupling.However,in the case of weak coupling,the angular momentum L of the true ground state does not change in accordance with the change of the magnetic field B and remains L=0.  相似文献   

13.
14.
The energy spectra of low-lying states of an exciton in a single and a vertically coupled quantum dots are studied under the influence of a perpendicularly applied magnetic field. Calculations are made by using the method of numerical diagonalization of the Hamiltonian within the effective-mass approximation. We also calculated the binding energy of the ground and the excited states of an exciton in a single quantum dot and that in a vertically coupled quantum dot as a function of the dot radius for different vaJues of the distance and the magnetic field strength.  相似文献   

15.
The quantum electronic transport through a precessing magnetic spin coupled to noncollinearly polarized ferromagnetic leads (F-MS-F) has been studied in this paper. The nonequilibrium Green function approach is used to calculate local density of states (LDOS) and current in the presence of external bias. The characters of LDOS and the electronic current are obtained. The tunneling current is investigated for different precessing angle and different configurations of the magnetization of the leads. The investigation revea/s that when the precessing angle takes θ 〈 π /2 and negative bias is applied, the resonant tunneling current appears, otherwise, it appears when positive bias is applied. When the leads are totally polarized and the precessing angel takes O, the tunneling current changes with the configuration of two leads; and it becomes zero when the two leads are antiparallel.  相似文献   

16.
Using the Keldysh nonequilibrium Green function technique, we study the current and shot noise spectroscopy of an interacting quantum dot coupled to two ferromagnetic leads with different polarizations in the Kondo regime. General formulas of current and shot noise are obtained, which can be applied in both the parallel (P) and antiparallel (AP) alignment cases. For large polarization values, it is revealed that the behaviour of differential conductance and shot noise are completely different for spin up and spin down configurations in the P alignment case. However, the differential conductance and shot noise have similar properties for different spin configurations in the P alignment case with the small polarization value and in the AP alignment case with any polarization value.  相似文献   

17.
We explore inelastic cotunneling through a strongly Coulomb-blockaded quantum dot attached to two ferromagnetic leads in the weak coupling limit using a generic quantum Langevin equation approach. We first develop a Bloch-type equation microscopically to describe the cotunneling-induced spin relaxation dynamics, and then develop explicit analytical expressions for the local magnetization, current, and its fluctuations. On this basis, we predict a novel zero-bias anomaly of the differential conductance in the absence of a magnetic field for the anti-parallel configuration, and asymmetric peak splitting in a magnetic field. Also, for the same system with large polarization, we find a negative zero-frequency differential shot noise in the low positive bias-voltage region. All these effects are ascribed to rapid spin-reversal due to underlying spin-flip cotunneling.  相似文献   

18.
Luchkin  V. N.  Mantsevich  V. N.  Maslova  N. S. 《JETP Letters》2021,113(11):681-688
JETP Letters - Non-stationary spin-dependent transport through the interacting single-level quantum dot coupled to ferromagnetic leads with non-collinear magnetizations has been analyzed...  相似文献   

19.
The polaron effect in a quantum dot quantum well (QDQW)system is investigated by using the perturbation method. Both the bound electron states outside and inside the shell well are taken into account . Numerical calculation on the CdS/HgS QDQW shows that the phonon correction to the electron ground state energy is quite significant and cannot be neglected.  相似文献   

20.
Using an equation of motion technique, we investigate the spin-polarized transport through a quantum dot coupled to ferromagnetic leads and a mesoseopie ring by the Anderson Hamiltonian. We analyze the transmission probability of this system in both the equilibrium and nonequilibrium cases, and our results reveal that the transport properties show some noticeable characteristics depending upon the spin-polarized strength p, the magnetic flux Ф and the number of lattice sites NR in the mesoseopic ring. These effects might have some potential applications in spintronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号