首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The fluorinated olefinic peptide nucleic acid (F-OPA) system was designed as a peptide nucleic acid (PNA) analogue in which the base carrying amide moiety was replaced by an isostructural and isoelectrostatic fluorinated C-C double bond, locking the nucleobases in one of the two possible rotameric forms. By comparison of the base-pairing properties of this analogue with its nonfluorinated analogue OPA and PNA, we aimed at a closer understanding of the role of this amide function in complementary DNA recognition. Here we present the synthesis of the F-OPA monomer building blocks containing the nucleobases A, T, and G according to the MMTr/Acyl protecting group scheme. Key steps are a selective desymmetrization of the double bond in the monomer precursor via lactonization as well as a highly regioselective Mitsunobu reaction for the introduction of the bases. PNA decamers containing single F-OPA mutations and fully modified F-OPA decamers and pentadecamers containing the bases A and T were synthesized by solid-phase peptide chemistry, and their hybridization properties with complementary parallel and antiparallel DNA were assessed by UV melting curves and CD spectroscopic methods. The stability of the duplexes formed by the decamers containing single (Z)-F-OPA modifications with parallel and antiparallel DNA was found to be strongly dependent on their position in the sequence with T(m) values ranging from +2.4 to -8.1 degrees C/modification as compared to PNA. Fully modified F-OPA decamers and pentadecamers were found to form parallel duplexes with complementary DNA with reduced stability compared to PNA or OPA. An asymmetric F-OPA pentadecamer was found to form a stable self-complex (T(m) approximately 65 degrees C) of unknown structure. The generally reduced affinity to DNA may therefore be due to an increased propensity for self-aggregation.  相似文献   

2.
The design, synthesis, and base-pairing properties of bicyclo[3.2.1]amide-DNA (bca-DNA), a novel phosphodiester-based DNA analogue, are reported. This analogue consists of a conformationally constrained backbone entity, which emulates a B-DNA geometry, to which the nucleo-bases were attached through an extended, acyclic amide linker. Homobasic adenine-containing bca decamers form duplexes with complementary oligonucleotides containing bca, DNA, RNA, and, surprisingly, also L-RNA backbones. UV and CD spectroscopic investigations revealed the duplexes with D- or L-complements to be of similar stability and enantiomorphic in structure. Bca oligonucleotides that contain all four bases form strictly antiparallel, left-handed complementary duplexes with themselves and with complementary DNA, but not with RNA. Base-mismatch discrimination is comparable to that of DNA, while the overall thermal stabilities of bca-oligonucleotide duplexes are inferior to those of DNA or RNA. A detailed molecular modeling study of left- and right-handed bca-DNA-containing duplexes showed only minor changes in the backbone structure and revealed a structural switch around the base-linker unit to be responsible for the generation of enantiomorphic duplex structures. The obtained data are discussed with respect to the structural and energetic role of the ribofuranose entities in DNA and RNA association.  相似文献   

3.
Oligoribonucleotide analogues having amide internucleoside linkages (AM1: 3'-CH(2)CONH-5' and AM2: 3'-CH(2)NHCO-5') at selected positions have been synthesized and the thermal stability of duplexes formed by these analogues with complementary RNA fragments has been evaluated by UV melting experiments. Two series of oligomers with either 2'-OH or 2'-OMe vicinal to the amide linkages were studied. Monomeric synthons (3' and 5'-C amines and carboxylic acids) were synthesized as follows: For synthesis of the AM1 analogue, the known sequence of radical allylation followed by the cleavage of the double bond was adopted. For synthesis of the AM2 analogue, novel routes via addition of nitromethane followed by conversion of the nitro function to either amino or carboxyl groups were developed. Coupling of monomeric amines and carboxylic acids followed by protecting group manipulation and phosphonylation gave dimeric 3'-hydrogenphosphonate building blocks for oligonucleotide synthesis. Monomeric model compounds having 3'-amide and 2'-OH or 2'-OMe groups were also prepared and their conformational equilibrium was determined by (1)H NMR. The AM1 and AM2 models showed equal preferences for the North conformers (at 40 degrees C, 88-89% with 2'-OH, and 92-93% with 2'-OMe). At physiological salt concentration (0.1 M NaCl) the duplexes between AM1 modified oligonucleotides and RNA had stability similar to unmodified RNA-RNA duplexes (Delta t(m)= -0.2 to +0.7 degrees C per modification). However, the AM2 modification resulted in substantial stabilization of duplexes: Delta t(m)= +1 to +2.4 degrees C per modification compared to all RNA. A 2'-O-methyl vicinal to the AM2 linkage further increased the duplex stability. Our results suggest that RNA analogues having amide internucleoside bonds are very promising candidates for medicinal applications.  相似文献   

4.
An L-DNA, the mirror-image isomer of natural DNA, has extraordinary nuclease resistance, and thus the molecules should be promising reagents for many applications, such as antisense technology. However, little is known about the structural and thermodynamic properties of DNAs with this modified nucleotide. In this study, we prepared the L-nucleotide (L-dA) and introduced it into oligodeoxyribonucleotides to assess the ability of the L-nucleotide as a functional molecule for many applications based on the DNA hybridization. Two decamers with an L-dA at the center were synthesized and duplexes with the complementary DNA strand were applied to structural and thermodynamic analyses. The structural study by CD spectra showed that the structures of both modified "L/D-D" duplexes were the typical B-form. This result suggests that the global structure of DNA was not collapsed by the introduction of an L-DNA. Thermodynamic parameters (deltaH degrees, deltaS degrees, and deltaG degrees 37) of the duplex formation, determined by UV melting experiments, indicated that the both duplexes were destabilized at about 2.5 to 3.0 kcal mol(-1) by the introduced L-dA, mainly due to an unfavorable enthalpic effect. In conjunction with information by other researchers, these results suggest that the L-DNA affect on the duplex structure and the stability vary locally; thus, the thermodynamic stability of modified L/D-D duplexes should be predictable by the nearest-neighbor thermodynamic parameters.  相似文献   

5.
Two bicyclic 2'-deoxynucleoside analogues containing a saturated and an unsaturated three-carbon 2',4'-linkage, respectively, have been synthesized using a ring-closing metathesis-based linear strategy starting from uridine. Both analogues have been incorporated into oligodeoxynucleotide sequences and increased the stability of DNA:RNA hybrid duplexes (DeltaT(m) approximately 2.5-5.0 degrees C per modification) and decreased the stability of dsDNA duplexes (DeltaT(m) approximately 2.5-1.0 degrees C per modification). CD spectroscopy revealed that the bicyclic nucleosides induced formation of A-type-like duplexes albeit to a lesser degree than found for locked nucleic acid (LNA) monomers. From the CD data and UV melting analysis, we propose that the 2'-oxygen atom of the bicyclic moiety is essential for the formation of stabilized A-type-like dsDNA but not for the formation of a stabilized A-type DNA:RNA hybrid.  相似文献   

6.
We report the synthesis of 1'-deoxy-1'-(benzimidazol-1-yl)-beta-D-ribofuranose 7 and 1'-deoxy-1'-phenyl-beta-D-ribofuranose 2. With these two ribonucleoside analogues we have a set of nine different RNA building blocks in hand, which are isostere to the natural bases. Now it is possible to investigate their duplex stabilizing forces. These forces are hydrogen bonds, base stacking, and solvation. The phosphoramidites of all building blocks were incorporated into a 12mer RNA, and the resulting RNA duplexes were investigated by UV- and CD-spectroscopy. We found that some of the RNA analogues are universal bases. The best universal bases with the lowest destabilization and the smallest discrimination between the natural bases are 1 (B) and 9 (E). On the basis of UV measurements we determined the melting points and the thermodynamic data. We were able to show that there are no hydrogen bonds between the natural bases and the RNA analogues. From thermodynamic data we calculated the contributions for base stacking and solvation of all modified building blocks. Comparison of calculated and measured data of double modified base pairs in 12mer RNA duplexes showed a further duplex stabilizing force in base pairs containing fluorine atoms at the Watson-Crick binding site. This stabilizing force can be defined as C-F.H-C hydrogen bond as is observed in crystal structures of 1'-deoxy-1'-(4-fluorophenyl)-beta-D-ribofuranose.  相似文献   

7.
We have used NMR and CD spectroscopy to study the conformations of modified oligonucleotides (locked nucleic acid, LNA) containing a conformationally restricted nucleotide (T(L)) with a 2'-O,4'-C-methylene bridge. We have investigated two LNA:RNA duplexes, d(CTGAT(L)ATGC):r(GCAUAUCAG) and d(CT(L)GAT(L)AT(L)GC):r(GCAUAUCAG), along with the unmodified DNA:RNA reference duplex. Increases in the melting temperatures of +9.6 degrees C and +8.1 degrees C per modification relative to the unmodified duplex were observed for these two LNA:RNA sequences. The three duplexes all adopt right-handed helix conformations and form normal Watson-Crick base pairs with all the bases in the anti conformation. Sugar conformations were determined from measurements of scalar coupling constants in the sugar rings and distance information derived from 1H-1H NOE measurements; all the sugars in the RNA strands of the three duplexes adopt an N-type conformation (A-type structure), whereas the sugars in the DNA strands change from an equilibrium between S- and N-type conformations in the unmodified duplex towards more of the N-type conformation when modified nucleotides are introduced. The presence of three modified T(L) nucleotides induces drastic conformational shifts of the remaining unmodified nucleotides of the DNA strand, changing all the sugar conformations except those of the terminal sugars to the N type. The CD spectra of the three duplexes confirm the structural changes described above. On the basis of the results reported herein, we suggest that the observed conformational changes can be used to tune LNA:RNA duplexes into substrates for RNase H: Partly modified LNA:RNA duplexes may adopt a duplex structure between the standard A and B types, thereby making the RNA strand amenable to RNase H-mediated degradation.  相似文献   

8.
A conformational analysis of the (3′S,5′R)-2′-deoxy-3′,5′-ethano-α-D -ribonucleosides (a-D-bicyclodeoxynucleosides) based on the X-ray analysis of N4-benzoyl-α-D -(bicyclodeoxycytidine) 6 and on 1H-NMR analysis of the α-D -bicyclodeoxynucleoside derivatives 1 - 7 reveals a rigid sugar structure with the furanose units in the l′-exo/2′-endo conformation and the secondary OH groups on the carbocyclic ring in the pseudoequatorial orientation. Oligonucleotides consisting of α-D -bicyclothymidine and α-D -bicyclodeoxyadenosine were successfully synthesized from the corresponding nucleosides by phosphoramidite methodology on a DNA synthesizer. An evaluation of their pairing properties with complementary natural RNA and DNA by means of UV/melting curves and CD spectroscopy show the following characteristics: i) α-bcd(A10) and α-bcd(T10) (α = short form of α-D )efficiently form complexes with complementary natural DNA and RNA. The stability of these hybrids is comparable or slightly lower as those with natural β-d(A10) or β-d(T10)( β = short form ofβ-D ). ii) The strand orientation in α-bicyclo-DNA/β-DNA duplexes is parallel as was deduced from UV/melting curves of decamers with nonsymmetric base sequences. iii) CD Spectroscopy shows significant structural differences between α-bicyclo-DNA/β-DNA duplexes compared to α-DNA/β-DNA duplexes. Furthermore, α-bicyclo-DNA is ca. 100-fold more resistant to the enzyme snake-venom phosphodiesterase with respect to β-DNA and about equally resistant as α-DNA.  相似文献   

9.
[structure: see text] A fluorinated OPA monomer containing the base thymine ((Z)-t-F-OPA) was synthesized in 12 steps, featuring a highly selective allylic over homoallylic Mitsunobu substitution for the introduction of the nucleobase. F-OPA modified PNA decamers were prepared by the MMTr/acyl protection strategy. The thermal stability of duplexes of PNA decamers containing (Z)-t-F-OPA units with antiparallel complementary DNA was measured. We found a strong dependence of stability from the sequential position of the (Z)-t-F-OPA units, ranging from DeltaT(m) of +2.4 to -8.1 degrees C/modification relative to unmodified PNA.  相似文献   

10.
We describe the synthesis of the phosphoramidite building blocks of alpha-tricyclo-DNA (alpha-tc-DNA) covering all four natural bases, starting from the already known corresponding alpha-tc-nucleosides. These building blocks were used for the preparation of three alpha-tc-oligonucleotide 10-mers representing a homopurine, a homopyrimidine, and a mixed purine/pyrimidine base sequence. The base-pairing properties with complementary parallel and antiparallel oriented DNA and RNA were studied by UV-melting analysis and CD spectroscopy. We found that alpha-tc-DNA binds preferentially to parallel nucleic acid complements through Watson-Crick duplex formation, with a preference for RNA over DNA. In comparison with natural DNA, alpha-tc-DNA shows equal to enhanced affinity to RNA and also pairs to antiparallel DNA or RNA complements, although with much lower affinity. In the mixed-base sequence these antiparallel duplexes are of the reversed Watson-Crick type, while in the homopurine/homopyrimidine sequences Hoogsteen and/or reversed Hoogsteen pairing is observed. Antiparallel duplex formation of two alpha-tc-oligonucleotides was also observed, although the thermal stability of this duplex was surprisingly low. The base-pairing properties of alpha-tc-DNA are discussed in the context of alpha-DNA, alpha-RNA, and alpha-LNA.  相似文献   

11.
Reported here is a 10-step synthesis of a phosphoramidite building block of 1'-aminomethylthymidine that starts from 2-deoxyribose. The framework of the branched aminonucleoside was elaborated from a known 1-cyano-1-bromo glycosyl donor, whose reaction with the silylated nucleobase furnished the 1'-cyanide, which was reduced to the desired aminomethylnucleoside. The N-allyloxycarbonyl (Alloc)-protected nucleoside was converted to a phosphoramidite building block and incorporated into the oligonucleotides 5'-GCAT*TATTAC-3', and 5'-GCAT*TAT*TAC-3', where T* denotes 1'-acylamidomethylthymidine residues. Removal of the Alloc protecting group and acylation with the residue of pyrene-1-yl-butanoic acid were achieved on support, using microwave irradiation to ensure full conversion. The UV-melting point of the duplex of the singly and doubly modified decamers with their fully complementary target sequence is 0.1-6.9 degrees C higher than that of the unmodified control duplex, depending on the salt concentration. This suggests that the aminomethyl linker may allow for the placing of a functional "payload" in the minor groove of DNA duplexes without disrupting the helix. Oligonucleotides thus endowed with functional modifications may become useful for biomedical applications.  相似文献   

12.
Tricyclo-DNA (tc-DNA) is a promising candidate for oligonucleotide-based therapeutic applications exhibiting increased affinity to RNA and increased resistance to nucleases. However, as many other oligonucleotide analogs, tc-DNA does not readily cross cell membranes. We wished to address this issue by preparing a prodrug of tc-DNA containing a metabolically labile group at C(6') that promotes cellular uptake. Two monomeric nucleoside building blocks bearing an ester function at C(6') (tc(ee)-T and tc(hd)-T) were synthesized starting from a known C(6') functionalized bicyclic sugar unit to which the cyclopropane ring was introduced via carbene addition. NIS-mediated nucleosidation of the corresponding glycal with in situ persilylated thymine afforded the β-iodonucleoside exclusively that was dehalogenated via radical reduction. Diversity in the ester function was obtained by hydrolysis and reesterification. The two nucleosides were subsequently incorporated into DNA or tc-DNA by standard phosphoramidite chemistry. The reactivity of the ester function during oligonucleotide deprotection was explored and the corresponding C(6') amide, carboxylic acid, or unchanged ester functions were obtained, depending on the deprotection conditions. Compared to unmodified DNA, these tc-DNA derivatives increased the stability of duplexes investigated with ΔT(m)/mod of +0.4 to +2.0 °C. The only destabilizing residue was tc(hd)-T, most likely due to self-aggregation of the lipophilic side chains in the single stranded oligonucleotide. A decamer containing five tc(hd)-T residues was readily taken up by HeLa and HEK 293T cells without the use of a transfection agent.  相似文献   

13.
We present the synthesis of the isobicyclo‐DNA building blocks with the nucleobases A, C, G and T, as well as biophysical and biological properties of oligonucleotides derived thereof. The synthesis of the sugar part was achieved in 5 steps starting from a known intermediate of the tricyclo‐DNA synthesis. Dodecamers containing single isobicyclo‐thymidine incorporations, fully modified A‐ and T‐containing sequences, and fully modified oligonucleotides containing all four bases were synthesized and characterized. Isobicyclo‐DNA forms stable duplexes with natural nucleic acids with a pronounced preference for DNA over RNA as complements. The most stable duplexes, however, arise by self‐pairing. Isobicyclo‐DNA forms preferentially B‐DNA‐like duplexes with DNA and A‐like duplexes with complementary RNA as determined by circular dichroism (CD) spectroscopy. Self‐paired duplexes show a yet unknown structure, as judged from CD spectroscopy. Biochemical tests revealed that isobicyclo‐DNA is stable in fetal bovine serum and does not elicit RNaseH activity.  相似文献   

14.
We recently reported on the synthesis and pairing properties of the DNA analogue bicyclo[3.2.1]amide DNA (bca-DNA). In this analogue the nucleobases are attached via a linear, 4-bond amide-linker to a structurally preorganized sugar-phosphate backbone unit. To define the importance of the degree of structural rigidity of the bca-backbone unit on the pairing properties, we designed the structurally simpler cyclopentane amide DNA (cpa-DNA), in which the bicyclo[3.2.1]-scaffold was reduced to a cyclopentane unit while the base-linker was left unchanged. Here we present a synthetic route to the enantiomerically pure cpa-DNA monomers and the corresponding phosphoramidites containing the bases A and T, starting from a known, achiral precursor in 9 and 12 steps, respectively. Fully modified oligodeoxynucleotides were synthesized by standard solid-phase oligonucleotide chemistry, and their base-pairing properties with complementary oligonucleotides of the DNA-, RNA-, bca-DNA-, and cpa-DNA-backbones were assessed by UV melting curves and CD-spectroscopic methods. We found that cpa-oligoadenylates form duplexes with complementary DNA that are less stable by -2.7 degrees C/mod. compared to DNA. The corresponding cpa-oligothymidylates do not participate in complementary base-pairing with any of the investigated backbone systems except with its own (homo-duplex). As its congener bca-DNA, cpa-DNA seems to prefer left-handed helical duplex structures with DNA or with itself as indicated by the CD spectra.  相似文献   

15.
The chemical synthesis of isoxanthopterin and 6‐phenylisoxanthopterin N8‐(2′‐deoxy‐β‐D ‐ribofuranosyl nucleosides) is described as well as their conversion into suitably protected 3′‐phosphoramidite building blocks to be used as marker molecules for DNA synthesis. Applying the npe/npeoc (=2‐(4‐nitrophenyl)ethyl/[2‐(4‐nitrophenyl)ethoxy]carbonyl) strategy, we used the new building blocks in the preparation of oligonucleotides by an automated solid‐support approach. The hybridization properties of a series of labelled oligomers were studied by UV‐melting techniques. It was found that the newly synthesized markers only slightly interfered with the abilities of the labelled oligomers to form stable duplexes with complementary oligonucleotides.  相似文献   

16.
We present the first pressure-versus-temperature phase diagram for the helix-to-coil transition of double stranded nucleic acids. The thermodynamic stability of a nucleic acid duplex is a complex function of temperature and pressure and strongly depends on the denaturation temperature, T(M), of the duplex at atmospheric pressure. Depending upon T(M), pressure, and temperature, the phase diagram shows that pressure may stabilize, destabilize, or have no effect on the conformational state of DNA. To verify the phase diagram, we have conducted high-pressure UV melting experiments on poly(dIdC)poly(dIdC), a DNA duplex, poly(rA)poly(rU), an RNA duplex, and poly(dA)poly(rU), a DNA/RNA hybrid duplex. The T(M) values of these duplexes have been modulated by altering the solution ionic strength. Significantly, at low salt, these three duplexes have helix-to-coil transition temperatures of 50 degrees C or less. In agreement with the derived phase diagram, we found that the polymeric duplexes were destabilized by pressure if the T(M) is < approximately 50 degrees C. However, these duplexes were stabilized by pressure if the T(M) is > approximately 50 degrees C. The DNA/RNA hybrid duplex, poly(dA)poly(rU), with a T(M) of 31 degrees C in 20 mM NaCl undergoes a pressure-induced helix-to-coil transition at room temperature. This is the first report of pressure-induced denaturation of a nucleic acid duplex and provides new insights into the molecular forces stabilizing these structures.  相似文献   

17.
We have designed and synthesised a double-headed nucleotide that presents two nucleobases in the interior of a dsDNA duplex. This nucleotide recognises and forms Watson-Crick base pairs with two complementary adenosines in a Watson-Crick framework. Furthermore, with judicious positioning in complementary strands, the nucleotide recognises itself through the formation of a T:T base pair. Thus, two novel nucleic acid motifs can be defined by using our double-headed nucleotide. Both motifs were characterised by UV melting experiments, CD and NMR spectroscopy and molecular dynamics simulations. Both motifs leave the thermostability of the native dsDNA duplex largely unaltered. Molecular dynamics calculations showed that the double-headed nucleotides are accommodated in the dsDNA by entirely local perturbations and that the modified duplexes retain an overall B-type geometry with the dsDNA unwound by around 25 or 60°, respectively, in each of the modified motifs. Both motifs can be accommodated twice in a dsDNA duplex without incurring any loss of stability and extrapolating from this observation and the results of modelling, it is conceivable that both can be multiplied several times within a dsDNA duplex. These new motifs extend the DNA recognition repertoire and may form the basis for a complete series of double-headed nucleotides based on all 16 base combinations of the four natural nucleobases. In addition, both motifs can be used in the design of nanoscale DNA structures in which a specific duplex twist is required.  相似文献   

18.
Three α-l-ribofuranosyl analogues of RNA nucleotides (α-l-RNA analogues) have been synthesized and incorporated into oligonucleotides using the phosphoramide approach on an automated DNA synthesizer. The 4′-C-hydroxymethyl-α-l-ribofuranosyl thymine monomer was furthermore synthesized. Relative to the unmodified duplexes, incorporation of a single α-l-RNA monomer into a DNA strand leads to reduced thermal stability of duplexes with DNA complements but unchanged thermal stability of duplexes with RNA complements, whereas incorporation of more than one α-l-RNA monomer lead to moderately decreased thermal stability also of duplexes with RNA complements. Efficient hybridization with an RNA complement and no melting transition with a DNA complement were observed with stereoregular chimeric oligonucleotides composed of a mixture of α-l-RNA and affinity enhancing α-l-LNA monomers (α-l-ribo-configured locked nucleic acid). Furthermore, duplexes formed between oligodeoxynucleotides containing an α-l-RNA monomer and complementary RNA were good substrates for Escherichia coli RNase H. RNA-selective hybridization was also achieved by the incorporation of 1-(4-C-hydroxymethyl-β-d-lyxofuranosyl)thymine monomers into a DNA strand, whereas stable duplexes were formed with both complementary DNA and RNA when these monomers were incorporated into an RNA strand.  相似文献   

19.
The 5-position of pyrimidines in DNA duplexes offers a site for introducing alkynyl substituents that protrude into the major groove and thus do not sterically interfere with helix formation. Substituents introduced at the 5-position of the deoxyuridine residue of dU:dA base pairs may stabilize duplexes and reinforce helices weakened by a low G/C content, which would otherwise lead to false negative results in DNA chip experiments. Here we report on a method for preparing oligonucleotides with a 5-alkynyl substituent at a 2'-deoxyuridine residue by on-support Sonogashira coupling involving the fully assembled oligonucleotide. A total of 25 oligonucleotides with 5-alkynyl substituents were prepared. The substituents either decrease the UV melting point of the duplex with the complementary strand or increase it by up to 7.1 degrees C, compared with that of the unmodified control duplex. The most duplex-stabilizing substituent, a pyrenylbutyramidopropyne moiety, is likely to intercalate but does not prevent sequence-specific base pairing of the modified deoxyuridine residue or the neighboring nucleotides. It also increases the signal for a target strand when employed on a small oligonucleotide microarray. The ability to tune the melting point of a DNA dodecamer duplex with a single side chain over a temperature range of >11 degrees C may prove useful when developing DNA sequences for biomedical applications.  相似文献   

20.
Isoguanosine (iG) and isocytidine (iC) differ from guanosine (G) and cytidine (C), respectively, in that the amino and carbonyl groups are transposed. The thermodynamic properties of a set of iG, iC containing RNA duplexes have been measured by UV optical melting. It is found that iG-iC replacements usually stabilize duplexes, and the stabilization per iG-iC pair is sequence-dependent. The sequence dependence can be fit to a nearest-neighbor model in which the stabilities of iG--iC pairs depend on the adjacent iG--iC or G--C pairs. For 5'-CG-3'/3'-GC-5' and 5'-GG-3'/3'-CC-5' nearest neighbors, the free energy differences upon iG-iC replacement are smaller than 0.2 kcal/mol at 37 degrees C, regardless of the number of replacements. For 5'-GC-3'/3'-CG-5', however, each iG--iC replacement adds 0.6 kcal/mol stabilizing free energy at 37 degrees C. Stacking propensities of iG and iC as unpaired nucleotides at the end of a duplex are similar to those of G and C. An NMR structure is reported for r(CiGCGiCG)(2) and found to belong to the A-form family. The structure has substantial deviations from standard A-form but is similar to published NMR and/or crystal structures for r(CGCGCG)(2) and 2'-O-methyl (CGCGCG)(2). These results provide benchmarks for theoretical calculations aimed at understanding the fundamental physical basis for the thermodynamic stabilities of nucleic acid duplexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号