首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The pharmacokinetics of 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) in lesions of urethral condylomata acuminata were investigated. Sixty patients (20 to 60 years old, 48 male and 12 female) were divided randomly into five groups and received topic application of different concentrations of ALA solution (0.5%, 1%, 3%, 5% or 10%). Biopsy was performed between 1 and 7 h and specimens were subjected to histological, PpIX fluorescence and human papillomavirus (HPV) DNA typing analyses. Fluorescence examination confirmed that ALA-induced PpIX fluorescence was dominantly distributed in the HPV-infected epidermis. In contrast, only a minimal amount of PpIX fluorescence was detected in the dermis. The maximal fluorescence intensity was detected at 5 h incubation. Higher ALA concentration (e.g. 5% and 10%) produced a stronger intensity. These results suggest that the topical application of 5-10% ALA solution for 3-5 h is the optimal condition for the photodynamic therapy of urethral condylomata acuminata. The selective damage of the condylomata acuminata lesions in the epidermis without damaging the dermis ensures a better control of recurrence and side effects such as ulceration or scarring. DNA typing showed that all patients were positive for low risk-HPV DNA and among them 18.3% of patients harbored high risk-HPV DNA.  相似文献   

2.
Fluorescence diagnosis and photodynamic therapy using 5-aminolevulinic acid (ALA) provide new methods for the detection and treatment of cervical cancer and especially its precursors. However, these techniques are restricted by the rate of uptake of the hydrophilic ALA, its poor diffusion through the bilayer of biological membranes or both. In this study we evaluated the effect of some esterified ALA derivatives on the induction of the endogenous photosensitizer, protoporphyrin IX (PpIX), and the photodamage in cultured human cervical cells (C33-A and CaSki). The kinetics of PpIX accumulation showed that ALA esters, especially the ALA-hexylester (h-ALA), induced significantly faster PpIX formation than ALA at the same concentration (0.5 mM). The PpIX induction showed a dose-dependent characteristic. The highest PpIX values could be achieved by an up to 1.3-13-fold lower concentration of ALA esters than with ALA. Using the Annexin V assay, apoptosis was found to be induced rapidly after irradiation in both ALA- and ALA esters-treated cells. On measuring mitochondrial activity, the incubation with h-ALA induced a more pronounced photodamage. The results indicate that improved or at least comparable photodynamic effects can be achieved by using remarkably lower doses of ALA esters.  相似文献   

3.
Synthesis of delta-aminolevulinic acid (ALA) derivatives is a promising way to improve the therapeutic properties of ALA, particularly cell uptake or homogeneity of protoporphyrin IX (PpIX) synthesis. The fluorescence emission kinetics and phototoxic properties of ALA-n-pentyl ester (E1) and R,S-ALA-2-(hydroxymethyl) tetrahydrofuranyl ester (E2) were compared with those of ALA and assessed on C6 glioma cells. ALA (100 micrograms/mL), E1 and E2 (10 micrograms/mL) induced similar PpIX-fluorescence kinetics (maximum between 5 and 7 h incubation), fluorescence being limited to the cytoplasm. The 50% lethal dose occurred after 6 h with 45, 4 and 8 micrograms/mL of ALA, E1 and E2, respectively. ALA, E1 and E2 induced no dark toxicity when drugs were removed after 5 min of incubation. However, light (25 J/cm2) applied 6 h after 5 min incubation with 168 micrograms/mL of each compound induced 85% survival with ALA, 27% with E1 and 41% with E2. Increasing the incubation time with ALA, E1 and E2 before washing increased the phototoxicity, but E1 and E2 remained more efficient than ALA, regardless of incubation time. ALA-esters were more efficient than ALA in inducing phototoxicity after short incubation times, probably through an increase of the amount of PpIX synthesized by C6 cells.  相似文献   

4.
Photodynamic therapy with 5-aminolevulinic acid (ALA) is based on metabolism of ALA to a photosensitizing agent, protoporphyrin IX (PpIX), in tumor cells. Photosensitivity of target cells may be influenced by mitochondrial iron levels because ferrochelatase-catalyzed insertion of Fe2+ into PpIX converts it to heme, a nonsensitizer. To investigate this prospect, we exposed L1210 cells (approximately 10(6)/mL in 1% serum-containing medium) to a lipophilic iron chelate, ferric-8-hydroxyquinoline (Fe[HQ]2, 0.5 microM), prior to treating with ALA (0.2 mM, 4 h) and irradiating with broadband visible light. When Fe(HQ)2 was added to cells immediately or 1 h before ALA, the initial rate of photokilling, as measured by thiazolyl blue (mitochondrial dehydrogenase) assay, was markedly less than that of non-iron controls. The HPLC analysis of cell extracts indicated that ALA-induced PpIX was at least 50% lower after this Fe(HQ)2 treatment, presumably explaining the drop in photolethality. By contrast, cells treated with ALA and light 20 h after being exposed to Fe(HQ)2 contained the same amount of PpIX as non-iron controls and were photoinactivated at nearly the same rate. The 20 h delayed cells contained approximately 12 times more immunodetectable ferritin heavy subunit than controls or 1 h counterparts, which could account for the disappearance of iron's antisensitization effects in the former. Consistent with this idea, the short-term effects of Fe(HQ)2 on ALA-induced sensitization were found to be blunted significantly in ferritin-enriched cells. The Fe(HQ)2 produced strikingly different results when cells were sensitized with exogenous PpIX, stimulating photokilling after short-term contact but inhibiting it after long-term contact while having no significant effect on the level of cell-associated PpIX in either case. Thus, iron can have diverse effects on PpIX-mediated photokilling, depending on contact time with cells and whether the porphyrin is metabolically derived or applied as such.  相似文献   

5.
Our novel approach was to compare the pharmacokinetics of 5-aminolevulinic acid (ALA), ALA-n-butyl and ALA-n-hexylester induced protoporphyrin IX (PpIX), together with the phototoxicity after photodynamic therapy (PDT) in human skin in vivo, using iontophoresis as a dose-control system. A series of four increasing doses of each compound was iontophoresed into healthy skin of 10 volunteers. The kinetics of PpIX metabolism (n = 4) and the response to PDT (n = 6) performed 5 h after iontophoresis, were assessed by surface PpIX fluorescence and post-irradiation erythema. Whilst ALA-induced PpIX peaked at 7.5 h, highest PpIX fluorescence induced by ALA-n-hexylester was observed at 3-6 h and no clear peak was seen with ALA-n-butylester. With ALA-n-hexylester, more PpIX was formed after 3 (P < 0.05) and 4.5 h, than with ALA or ALA-n-butylester. All compounds showed a linear correlation between logarithm of dose and PpIX fluorescence/phototoxicity at 5 h, with R-values ranging from 0.87 to 1. In addition, the ALA-n-hexylester showed the tendency to cause greater erythema than ALA and ALA-n-butylester. Fluorescence microscopy (n = 2) showed similar PpIX distributions and penetration depths for the three drugs, although both ALA esters led to a more homogeneous PpIX localization. Hence, ALA-n-hexylester appears to have slightly more favorable characteristics for PDT than ALA or ALA-n-butylester.  相似文献   

6.
The temperature dependence of the uptake phase of 5-aminolevulinic acid (ALA) and the following production phase of protoporphyrin IX (PpIX) in normal mouse skin was investigated. A cream containing 20% ALA was topically applied on the skin for 10 min. The amount of ALA-induced PpIX was evaluated by measuring the fluorescence of PpIX from the treated skin. No measurable amount of PpIX was found in the skin immediately after 10 min application of ALA. The penetration of ALA into the skin was almost temperature independent while the following production of PpIX was found to be a strongly temperature-dependent process. Practically no PpIX was formed in the skin as long as skin temperature was kept low (12 degrees C).  相似文献   

7.
Abstract— The subcellular and, specifically, mitochondrial localization of the photodynamic sensitizers Photofrin and aminolevulinic acid (ALA)-induced protoporphyrin-IX (PpIX) has been investigated in vitro in radiation-induced fibrosarcoma (RIF) tumor cells. Comparisons were made of parental RIF-1 cells and cells (RIF-8A) in which resistance to Photofrin-mediated photodynamic therapy (PDT) had been induced. The effect on the uptake kinetics of Photofrin of coincubation with one of the mitochondria-specific probes 10N-Nonyl acridine orange (NAO) or rhodamine-123 (Rh-123) and vice versa was examined. The subcellular colocalization of Photofrin and PpIX with Rh-123 was determined by double-label confocal fluorescence microscopy. Clonogenic cell survival after ALA-mediated PDT was determined in RIF-1 and RIF-8A cells to investigate cross-resistance with Photofrin-mediated PDT. At long (18 h) Photofrin incubation times, stronger colocalization of Photofrin and Rh-123 was seen in RIF-1 than in RIF-8A cells. Differences between RIF-1 and RIF-8A in the competitive mitochondrial binding of NAO or Rh-123 with Photofrin suggest that the inner mitochondrial membrane is a significant Photofrin binding site. The differences in this binding may account for the PDT resistance in RIF-8A cells. With ALA, the peak accumulations of PpIX occurred at 5 h for both cells, and followed a diffuse cytoplasmic distribution compared to mitochondrial localization at 1 h ALA incubation. There was rapid efflux of PpIX from both RIF-1 and RIF-8A. As with Photofrin, ALA-induced PpIX exhibited weaker mitochondrial localization in RIF-8A than in RIF-1 cells. Clonogenic survival demonstrated cross-resistance to incubation in PpIX but not to ALA-induced PpIX, implying differences in mitochondrial localization and/or binding, depending on the source of the PpIX within the cells.  相似文献   

8.
BACKGROUND AND OBJECTIVE: Administration of 5-aminolevulinic acid (ALA) induces accumulation of the photosensitive compound protoporphyrin IX (PpIX) in certain tissues. PplX can be used as photosensitizer in photodynamic therapy (PDT). More selective or higher PpIX accumulation in the area to be treated could optimize the results of ALA-PDT. Porphobilinogen deaminase (PBGD) is rate-limiting in PpIX formation whereas ferrochelatase converts PpIX into haem by chelation of ferrous iron into PpIX. This results in a moment of close interaction (ferrochelatase binding to PpIX) during which ferrochelatase could selectively be destroyed resulting in an increased PpIX concentration. The aim of the present study was to investigate whether illumination before PDT can selectively destroy ferrochelatase. and whether this results in higher PpIX accumulation and thereby increases the PDT effect. Furthermore, the effect of a second ALA dose was tested. STUDY DESIGN/MATERIALS AND METHODS: Oesophageal tissue of 60 rats were allocated to 2 groups of 30 animals each. In one group, enzyme and PpIX measurements were performed after ALA administration (200 mg/kg orally, n=20), or a second dose of 200 mg/kg ALA at 4 h (n=10), half of each group with and without illumination at 1 h with 12.5 J/cm diffuser length. In the second group, PDT was performed. Ten animals were illuminated at 3 h after ALA administration with 20 (n=5) or 32.5 J/cm (n=5), 10 animals were illuminated at 1 h (12.5 J/cm) and received intra-oesophageal PDT treatment (20 J/cm) at 3 h (n=5) or 4 h (n=5) after ALA. Additionally, 10 animals received a second dose of 200 mg/kg ALA at 4 h and were illuminated (20 J/cm) at 7 h after the first dose of ALA with (n=5) or without (n=5) illumination at 4 h (12.5 J/cm). RESULTS: Illumination with 12.5 J/cm at 1 h after ALA administration caused inhibition of the activity of ferrochelatase at 3 and 4 h after ALA (P=0.02 and P<0.001, respectively), but not at 7 h (P=0.3). In animals sacrificed at 4 h the ratio PBGD:ferrochelatase was higher in animals illuminated at 1 h compared to non-illuminated animals (P<0.001). PpIX concentration was highest (42.7 +/- 3.2 pmol/mg protein) at 3 h after ALA administration and did not increase by illumination at 1 h. Administration of a second dose of ALA did not result in higher PpIX accumulation. After PDT, no difference in epithelial or muscular damage was found between the various groups. CONCLUSION: Illumination at 1 h after ALA administration can cause selective destruction of ferrochelatase, resulting in a higher ratio of PBGD:ferrochelatase. This does not result in accumulation of more porphyrins, even when a second dose of ALA is given. Therefore, under the conditions used in this study fractionated illumination does not enhance ALA-PDT-induced epithelial ablation of the rat oesophagus.  相似文献   

9.
The kinetics of accumulation of protoporphyrin IX (PpIX) after topical application of 5-aminolevulinic acid (ALA) and its methylester (5-aminolevulinic acid methylester [ALA-Me]) was studied on rat oral mucosa. The accumulation of PpIX in mucosa and skin after intravenous injection of ALA and ALA-Me was also studied. The elimination rate of PpIX was dependent on drug and dose as well as on administration route. Application of ALA on rat oral mucosa and skin caused a systemic effect with PpIX building up in remote skin sites not exposed to the drugs. No such systemic effect was seen after application of ALA-Me either in mucosa or on skin. Intravenous injection of the drugs (0.2 g/kg) leads to more fluorescence in the skin than topical application of the drug (20%). For mucosa, the opposite is true. Maximal PpIX fluorescence appeared later after application of high concentrations of the drugs (around 8 h for 5% and 20% wt/wt) than after application of low concentrations (around 3-5 h for 1% and 2% wt/wt).  相似文献   

10.
Photodynamic therapy with 5-aminolevulinic acid (ALA) derived protoporphyrin IX (PpIX) as photosensitizer is a promising treatment for basal cell carcinomas. Until now ALA has been administered topically as an oil-in-water cream in most investigations. The disadvantage of this administration route is insuffici?nt penetration in deeper, nodular tumours. Therefore we investigated intracutaneous injection of ALA as an alternative administration route. ALA was administered in 6-fold in the normal skin of three 6-week-old female Dutch pigs by intracutaneous injection of an aqueous solution of ALA (pH 5.0) in volumes of 0.1-0.5 ml and concentrations of 0.5-2% and by topical administration of a 20% ALA cream. During 8 h fluorescence of ALA derived PpIX was measured under 405 nm excitation. For the injection the measured fluorescence was shown to be dose dependent. All injected doses of 3 mg ALA or more lead to a faster initial increase rate of PpIX synthesis and significantly greater fluorescence than that measured after topical administration of ALA. Irradiation (60 Jcm(-2) for 10 min) of the spots was performed at 3.5 h after ALA administration. After 48 and 96 h visual damage scores were evaluated and biopsies were taken for histopathological examination. After injection of 2 mg ALA or more the PDT damage after illumination was shown to be significantly greater than after topical application of 20% ALA. An injected dose of 10 mg ALA (0.5 ml of a 2% solution) resulted in significantly more tissue damage after illumination than all other injected doses.  相似文献   

11.
Photodynamic therapy (PDT) with the pro-drugs 5-aminolevulinic acid (ALA) or methyl aminolevulinate (MAL) utilizes the combined interaction of a photosensitizer, light and molecular oxygen to ablate tumor tissue. To potentially increase accumulation of the photosensitizer, protoporphyrin IX (PpIX), within tumor cells an iron chelator can be employed. This study analyzed the effects of ALA/MAL-induced PDT combined with the iron chelator 1, 2-diethyl-3-hydroxypyridin-4-one hydrochloride (CP94) on the accumulation of PpIX in human glioma cells in vitro. Cells were incubated for 0, 3 and 6 h with various concentrations of ALA/MAL with or without CP94 and the resulting accumulations of PpIX, which naturally fluoresces, were quantified prior to and following light irradiation. In addition, counts of viable cells were recorded. The use of CP94 in combination with ALA/MAL produced significant enhancements of PpIX fluorescence in human glioma cells. At the highest concentrations of each prodrug, CP94 enhanced PpIX fluorescence significantly at 3 h for ALA and by more than 50% at 6 h for MAL. Cells subsequently treated with ALA/MAL-induced PDT in combination with CP94 produced the greatest cytotoxicity. It is therefore concluded that with further study CP94 may be a useful adjuvant to photodiagnosis and/or PpIX-induced PDT treatment of glioma.  相似文献   

12.
Limited depth of penetration significantly limits photodynamic therapy of nodular basal cell carcinoma (BCC) using topical δ(5)-aminolevulinic acid (ALA). To demonstrate safety and efficacy of orally administered ALA in inducing endogenous protoporphyrin IX (PpIX) production in BCC, 13 patients with BCC ingested ALA in a dose-escalation protocol. All dose ranges (10, 20 or 40 mg/kg single doses) resulted in formation of PpIX in human skin and BCC, measurable by in vivo fluorescence spectrophotometry. The PpIX fluorescence peaked in tumors before normal adjacent skin from 1 to 3 h after ALA ingestion. Gross fluorescence imaging of ex vivo specimens revealed greater PpIX fluorescence in tumor than normal skin only at the 40 mg/kg dose. Fluorescence microscopy confirmed this finding by showing distinct, full-thickness PpIX fluorescence in all subtypes of BCC only after ALA given at 40 mg/kg. Side effects were dose dependent and self limited. Photosensitivity lasting less than 24 h and nausea coinciding with peak skin PpIX fluorescence occurred at 20 and 40 mg/kg doses. After 40 mg/kg ALA, serum hepatic enzyme levels rose to a maximum within 24 h, then resolved over 1–3 weeks. Transient bilirubinuria occurred in two patients.  相似文献   

13.
Abstract Protoporphyrin IX (PpIX) is one of the photodynamically active substances that are endogenously synthesized in the metabolic pathway for heme as a precursor. Aminolevulinic acid-esters are more lipophilic than conventional 5-aminolevulinic acid (ALA) and some of them are currently being approved as new drugs for photodynamic diagnosis (PDD) and photodynamic therapy (PDT). In order to investigate the pharmacokinetics of ALA and ALA-ethyl ester (ALA-ethyl) in the atheromatous plaque and normal aortic wall of rabbit postballoon injured artery, each 60 mg kg(-1) of ALA or ALA-ethyl was injected intravenously followed by serial detection of PpIX fluorescence of harvested arteries at 0-48 h post-injection. Maximum PpIX build-up in the atheromatous plaque was seen at 2 h after injecting ALA. In contrast, it occurred at 9 h after injecting ALA-ethyl. In addition, the selective build-up of ALA in the atheromatous plaque compared to normal vessel wall was much higher (10 times) than that of ALA-ethyl. The time of maximum fluorescence intensity of PpIX was employed as drug-light-interval for subsequent PDT treatment of the atheromatous plaque with 50-150 J cm(-1) of light dose. Significant reduction in plaque was observed without damage of the medial wall at both groups, but smooth muscle cell (SMC) was still present in the media region below the PDT-treated atheromatous plaque. In conclusion, ALA may be a more effective compound for endovascular PDT treatment of the atheromatous plaque compared with ALA-ethyl based on their pharmacokinetics, but further optimization of PDT methodology remains to remove completely residual SMC in the media for preventing potential restenosis.  相似文献   

14.
Studies were carried out on 5-aminolevulinic acid (ALA)-induced protoporphyrin (PpIX) synthesis in mice peritoneal macrophages and two human oral squamous cell carcinoma (OSCC) cell lines NT8e and 4451. Cells were treated with 200 microg/ml ALA for 15 h and PpIX accumulation was monitored by spectrofluorometry and phototoxicity to red light (630+/-20 nm) was measured by MTT assay. PpIX accumulation was higher in macrophages as compared to OSCC cells under both normal serum concentration (10%) and conditions of serum depletion. The results on phototoxicity measurements correlated well with the levels of PpIX accumulation in both macrophages and cancer cells. While red light caused 20% phototoxicity in macrophages, no phototoxicity was seen in 4451 cells at 10% serum. Decrease in serum concentration to 5% and 1% led to higher phototoxicity corresponding to 40% and 70% in macrophages and 10% and 15% in 4451 cells. Similar results were obtained in NT8e cell line. Propidium iodide staining followed by fluorescence microscopic observations on photodynamically treated co-culture of murine or human macrophages and cancer cells showed selective damage to macrophages. These results suggest that in OSCC, macrophages would contribute more to tumor PpIX level than tumor cells themselves and PDT may lead to selective killing of macrophages at the site of treatment. Since macrophages are responsible for production and secretion of various tumor growth mediators, the effect of selective macrophage killing on the outcome of PDT would be significant.  相似文献   

15.
A series of 5-aminolevulinic acid and its alkylester methanesulfonates was exploited to photodynamic therapy(PDT) of human lymphocytic cells, U-937 in vitro. The PDT efficiency is influenced by the concentration and incubation time. Generally, for ALA and its alkylester methanesulfonates, the cell survival rate decreases and the accumulation ability of PpIX increases with the concentration and incubation time. We found that the longer carbon chain methanesulfonates(C5-S, C6-S, C8-S) exhibit better PDT effec...  相似文献   

16.
Ester derivatives of 5-aminolevulinic acid (ALA-esters) have been proposed as alternative drugs for ALA in photodynamic therapy. After topical application of creams containing ALA, ALA methylester (ALA-Me), ALA hexylester (ALA-Hex) and ALA octylester (ALA-Oct) on mouse skin, typical fluorescence excitation and emission spectra of protoporphyrin IX (PpIX) were recorded, exhibiting a similar spectral shape for all the drugs in the range of concentrations (0.5-20%) studied. The accumulation kinetics of PpIX followed nearly a similar profile for all the drug formulations. The fluorescence of PpIX peaked at around 6-12 h of continuous cream application. Nevertheless, some differences in pharmacokinetics were noticed. For ALA cream, the highest PpIX fluorescence was achieved using 20% of ALA in an ointment. Conversely, 10% of ALA-Me and ALA-Hex, but not of ALA-Oct, in the cream was more efficient (P < 0.05) than was 20%. The cream becomes rather fluid when 20% of any of these ALA-esters is used in ointment, whereas 10% and lower concentrations of ALA-esters do not significantly increase fluidity of the cream. The dependence of PpIX accumulation on the concentration of ALA and ALA-ester in the applied cream followed (P < 0.002) kinetics as described by a mathematical model based on the Michaelis-Menten equation for enzymatic processes. Under the present conditions, the PpIX amount in the skin increased by around 50% by the application of ALA-Me, ALA-Hex or ALA-Oct for 4-12 h as compared with ALA for the same period. Observations of the mice under exposure to blue light showed that after 8-24 h of continuous application of ALA, the whole mouse was fluorescent, whereas in the case of ALA-Me, ALA-Hex and ALA-Oct the fluorescence of PpIX was located only at the area of initial cream application. The amount of the active compound in the applied cream necessary to induce 90% of the maximal amount of PpIX was determined for normal mouse skin. Optimal PpIX fluorescence can be attained using around 5% ALA, 10% ALA-Me and 5% ALA-Hex creams during short application times (2-4 h). Topical application of ALA-Oct may not gain optimal PpIX accumulation for short applications (<5 h). For long application times (8-12 h), it seems that around 1% ALA, 4% ALA-Me, 6% ALA-Hex and 16% ALA-Oct can give optimal PpIX fluorescence. But for long application times and high concentrations, systemic effect of ALA applied topically on relatively large areas should be considered.  相似文献   

17.
Lymphocytes treated with δ-aminolevulinic acid (ALA) can accumulate the photoactive, fluorescent heme precursor, protoporphyrin IX (PpIX). With visible light illumination, PpIX can be used in photodynamic therapy (ALA-PDT) to kill or functionally alter cells. The aim of this study was to characterize the effects of ALA and ALA-PDT on resting and activated human peripheral blood T lymphocytes. Accumulation of PpIX depends inversely on the rate of its iron-dependent conversion into heme. Activated, replicating lymphocytes have low intracellular iron levels, with corresponding increases in the transferrin receptor (CD71). Thus, we expected activated lymphocytes would preferentially accumulate PpIX. Using four-color flow cytometry, we examined ALA-induced PpIX levels in T-cell subsets of resting and activated human peripheral blood mononuclear cells and the relationship between CD71 and PpIX. Peripheral blood mononuclear cells stimulated by phytohemagglutinin (PHA) were simultaneously phenotyped for PpIX, CD71 and the T-cell markers CD3 and CD4 or CDS. In activated cells treated with 0-6mM ALA for 4 h, PpIX fluorescence was maximal at 1 mM ALA. On a single cell basis, there was a strong correlation between PpIX ac-cumulation and CD71 expression. The ALA-treated, PHA-stimulated, CD71+ lymphocytes had an eight-fold greater mean PpIX fluorescence than nonactivated, CD71- cells. Approximately 87% of the CD4* and 85% of the CD8+ T cells accumulated PpIX. The PpIX levels of CDS+ cells were about 5% greater than CD4+ cells. In addition, mixed lymphocyte reaction-stimulated cells treated with ALA accumulated more PpIX than controls. Thus, activated cells preferentially accumulate endogenous PpIX when exogenous ALA is administered. Cytotoxicity studies showed that the majority of the activated cells following ALA-PDT were killed but resting cells were spared. Also, in examining activation markers by flow cytometry the number of cells that were positive for activation markers CD38 or CD71 dramatically decreased after ALA and light treatment in activated populations. The data suggest a role for ALA-PDT as an immunomodulator or photocytotoxic agent targeting activated lymphocytes.  相似文献   

18.
The formation of protoporphyrin IX (PpIX) in human skin during topical application of 5-aminolevulinic acid (ALA) was found to be strongly temperature dependent, with an activation energy of about 17 kcal/mol. This temperature dependence is mainly related to porphyrin production and not to ALA penetration into the skin. The penetration of ALA into mouse and human skin was almost temperature independent. The activation energy of PpIX production in mouse skin was practically identical with that in human skin. The activation energy of ALA uptake by cells in vitro was about 10 kcal/mol and that for PpIX production was about 13 kcal/mol. The latter activation energy was within the error limits similar to that for the activity of the enzyme porphobilinogen deaminase, suggesting that this enzyme might represent a rate-limiting step for PpIX production in living tissue.  相似文献   

19.
Photodynamic therapy (PDT) with topical aminolevulinic acid (ALA) has been shown in previous studies to improve psoriasis. However, topical ALA-PDT may not be practical for the treatment of extensive disease. In order to overcome this limitation we have explored the potential use of oral ALA administration in psoriatic patients. Twelve patients with plaque psoriasis received a single oral ALA dose of 10, 20 or 30 mg/kg followed by measurement of protoporphyrin IX (PpIX) fluorescence in the skin and circulating blood cells. Skin PpIX levels were determined over time after ALA administration by the quantification of the 635 nm PpIX emission peak with in vivo fluorescence spectroscopy under 442 nm laser excitation. Administration of ALA at 20 and 30 mg/kg induced preferential accumulation of PpIX in psoriatic as opposed to adjacent normal skin. Peak fluorescence intensity in psoriatic and normal skin occurred between 3 and 5 h after the administration of 20 and 30 mg/kg, respectively. Ratios of up to 10 for PpIX fluorescence between psoriatic versus normal skin were obtained at the 30 mg/kg dose of ALA. Visible PpIX fluorescence was also observed on normal facial skin, and nonspecific skin photosensitivity occurred only in patients who received the 20 or 30 mg/kg doses. PpIX fluorescence intensity was measured in circulating blood cells by flow cytometry. PpIX fluorescence was higher in monocytes and neutrophils as compared to CD4+ and CD8+ T lymphocytes. PpIX levels in these cells were higher in patients who received higher ALA doses and peaked between 4 and 8 h after administration of ALA. There was only a modest increase in PpIX levels in circulating CD4+ and CD8+ T lymphocytes. In conclusion oral administration of ALA induced preferential accumulation of PpIX in psoriatic plaques as compared to adjacent normal skin suggesting that PDT with oral ALA should be further explored for the treatment of psoriasis.  相似文献   

20.
The skin of nude mice was exposed to erythemogenic doses of UV radiation, which resulted in erythema with edema. An ointment containing 5-aminolevulinic acid (ALA) was topically applied on mouse and human skin. Differences in the kinetics of protoporphyrin accumulation were investigated in normal and UV-exposed skin. At 24 and 48 h after UV exposure, skin produced significantly less protoporphyrin IX (PpIX) than skin unexposed to UV. Human skin on body sites frequently exposed to solar radiation (the lower arm) also produced less PpIX than skin exposed more rarely to the sun (the upper arm). It is concluded that UV radiation introduces persisting changes in the skin, relevant to its capability of producing PpIX from ALA. The observed differences in ALA-induced PpIX fluorescence may be the result of altered penetration of ALA through the stratum corneum or altered metabolizing ability of normal and UV-exposed skin (or both).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号