首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A detailed theoretical and experimental analysis of the artifacts induced by homonuclear band-selective decoupling during CT frequency labeling is presented. The effects are discussed in the context of an amino-acid-type editing filter implemented in (1)H-(13)C CT-HSQC experiments of methyl groups in proteins. It is shown that both Bloch-Siegert shifts and modulation sidebands are efficiently suppressed by using additional off-resonance decoupling as proposed by Zhang and Gorenstein [J. Magn. Reson. 132 (1998) 81], and appropriate adjustment of a set of pulse sequence parameters. The theoretical predictions are confirmed by experiments performed on (13)C-labeled protein samples, yielding artifact-free amino-acid-type edited methyl spectra.  相似文献   

2.
Triple-resonance experiments capable of correlating directly bonded and proximate carbon and nitrogen backbone sites of uniformly 13C- and 15N-labeled peptides in stationary oriented samples are described. The pulse sequences integrate cross-polarization from 1H to 13C and from 13C to 15N with flip-flop (phase and frequency switched) Lee–Goldburg irradiation for both 13C homonuclear decoupling and 1H–15N spin exchange at the magic angle. Because heteronuclear decoupling is applied throughout, the three-dimensional pulse sequence yields 13C shift/1H–15N coupling/15N shift correlation spectra with single-line resonances in all three frequency dimensions. Not only do the three-dimensional spectra correlate 13C and 15N resonances, they are well resolved due to the three independent frequency dimensions, and they can provide up to four orientationally dependent frequencies as input for structure determination. These experiments have the potential to make sequential backbone resonance assignments in uniformly 13C- and 15N-labeled proteins.  相似文献   

3.
13C-observe REDOR and θ-REDOR experiments for recovering the 13C–2D dipolar interaction during MAS NMR are compared. It is found that limited 2D RF power may severely compromise the performance of the REDOR experiment whereas the θ-REDOR experiment can be designed to work well. Results are presented for an isolated 13C–2D spin pair with a large deuterium quadrupolar coupling constant and for a 13C coupled to three methyl deuterons undergoing fast methyl group rotation.  相似文献   

4.
A multiple-pulse technique for complete dipolar decoupling of directly bonded13C-labeled sites is described. It achieves significant spectral simplifications in a recently introduced two-dimensional double-quantum solid-state NMR experiment for determining torsion angles. Both homonuclear and heteronuclear dipolar couplings are removed by combining a13C multiple-pulse sequence with continuous-wave irradiation on the protons. The13C sequence has a fundamental 10-pulse cycle which is a significantly modified magic-sandwich-echo sequence. The crucial heteronuclear decoupling is achieved by breaking the 360° “inner” pulses in the magic sandwich into 90° pulses and spacing them by1H 360° pulse lengths. Spectral artifacts typical of multiple-pulse sequences are eliminated by phase shifts between cycles. In contrast to many other multiple-pulse decoupling sequences, the long window in the cycle is the dwell time and can be longer than the inverse dipolar coupling, which makes the sequence practical for direct detection even with long pulse ring-down times. A modification of the sequence to scale the chemical shift and increase the effective spectral width is also presented. The 1D and double-quantum 2D experiments are demonstrated on polyethylene with 4%13C–13C spin pairs. The potential of this approach for distinguishing segmental conformations is illustrated by spectral simulations of the two-dimensional ridge patterns that correlate double-quantum and single-quantum chemical-shift anisotropies.  相似文献   

5.
The advantages offered by ultra-fast (>60 kHz) magic angle spinning (MAS) rotation for the study of biological samples, notably containing paramagnetic centers are explored.It is shown that optimal conditions for performing solid-state 13C NMR under 60 kHz MAS are obtained with low-power CW 1H decoupling, as well as after a low-power 1H,13C cross-polarization step at a double-quantum matching condition. Acquisition with low-power decoupling highlights the existence of rotational decoupling sidebands. The sideband intensities and the existence of first and second rotary conditions are explained in the framework of the Floquet–van Vleck theory.As a result, optimal 13C spectra of the oxidized, paramagnetic form of human copper zinc superoxide dismutase (SOD) can be obtained employing rf-fields which do not exceed 40 kHz during the whole experiment. This enables the removal of unwanted heating which can lead to deterioration of the sample. Furthermore, combined with the short 1H T1s, this allows the repetition rate of the experiments to be shortened from 3 s to 500 ms, thus compensating for the sensitivity loss due to the smaller sample volume in a 1.3 mm rotor. The result is that 2D 13C–13C correlation could be acquired in about 24 h on less than 1 mg of SOD sample.  相似文献   

6.
Two 3D experiments, (H)CCH3-TOCSY and H(C)CH3-TOCSY, are proposed for resonance assignment of methyl-containing amino acid side chains. After the initial proton–carbon INEPT step, during which either carbon or proton chemical shift labeling is achieved (t1), the magnetization is spread along the amino acid side chains by a carbon spin lock. The chemical shifts of methyl carbons are labeled (t2) during the following constant time interval. Finally the magnetization is transferred, in a reversed INEPT step, to methyl protons for detection (t3). The proposed experiments are characterized by high digital resolution in the methyl carbon dimension (t2max = 28.6 ms), optimum sensitivity due to the use of proton decoupling during the long constant time interval, and an optional removal of CH2, or CH2 and CH, resonances from the F2F3 planes. The building blocks used in these experiments can be implemented in a range of heteronuclear experiments focusing on methyl resonances in proteins. The techniques are illustrated using a 15N, 13C-labeled E93D mutant of Schizosacharomyces pombe phosphoglycerate mutase (23.7 kDa).  相似文献   

7.
We show that for observing high-resolution heteronuclear NMR spectra of anisotropically mobile systems with order parameters less than 0.25, moderate magic-angle spinning (MAS) rates of 11 kHz combined with 1H decoupling at 1–2 kHz are sufficient. Broadband decoupling at this low 1H nutation frequency is achieved by composite pulse sequences such as WALTZ-16. We demonstrate this moderate MAS low-power decoupling technique on hydrated POPC lipid membranes, and show that 1 kHz 1H decoupling yields spectra with the same resolution and sensitivity as spectra measured under 50 kHz 1H decoupling when the same acquisition times (50 ms) are used, but the low-power decoupled spectra give higher resolution and sensitivity when longer acquisition times (>150 ms) are used, which are not possible with high-power decoupling. The limits of validity of this approach are explored for a range of spinning rates and molecular mobilities using more rigid membrane systems such as POPC/cholesterol mixed bilayers. Finally, we show 15N and 13C spectra of a uniaxially diffusing membrane peptide assembly, the influenza A M2 transmembrane domain, under 11 kHz MAS and 2 kHz 1H decoupling. The peptide 15N and 13C intensities at low-power decoupling are 70–80% of the high-power decoupled intensities. Therefore, it is possible to study anisotropically mobile lipids and membrane peptides using liquid-state NMR equipment, relatively large rotors, and moderate MAS frequencies.  相似文献   

8.
The observation of second-order Doppler-free optical resonances with a width of 50 Hz are reported for the first time. It was achieved due to the use of optical selection of cold particles from an absorbing gas. The experiments have been carried out by using a new laser spectrometer, supposed to obtain the saturated absorption resonances with a relative width 10–13–10–14. The results of experimental and theoretical studies of second-order Doppler-free effect influence on the shape of nonlinear optical resonances in transit-time conditions are considered.  相似文献   

9.
Application of heteronuclear magnetic resonance pulse methods to13C,15N-labeled nucleic acids is important for the accurate structure determination of larger RNA and DNA oligonucleotides and protein–nucleic acid complexes. These methods have been applied primarily to RNA, due to the availability of labeled samples. The two major differences between DNA and RNA are at the C2′ of the ribose and deoxyribose and the additional methyl group on thymine versus uracil. We have enzymatically synthesized a13C,15N-labeled 32 base DNA oligonucleotide that folds to form an intramolecular triplex. We present two- and three-dimensional versions of a new HCCCH–TOCSY experiment that provides intraresidue correlation between the thymine H6 and methyl resonances via the intervening carbons (H6–C6–C5–Cme–Hme).  相似文献   

10.
Novel procedures for the spectral assignment of peaks in high-resolution solid-state 13C NMR are discussed and demonstrated. These methods are based on the observation that at moderate and already widely available rates of magic-angle spinning (10–14 kHz MAS), CH and CH2 moieties behave to a large extent as if they were effectively isolated from the surrounding proton reservoir. Dipolar-based analogs of editing techniques that are commonly used in liquid-state NMR such as APT and INEPT can then be derived, while avoiding the need for periods of homonuclear 1H–1H multipulse decoupling. The resulting experiments end up being very simple, essentially tuning-free, and capable of establishing unambiguous distinctions among CH, CH2, and carbon sites. The principles underlying such sequences were explored using both numerical calculations and experimental measurements, and once validated their editing applications were illustrated on a number of compounds.  相似文献   

11.
A method of 13C chemical-shift-resolved 1H second moment imaging is proposed for molecular mobility imaging of heterogeneous materials. For evaluating the 1H second moment, the method relies on the curve fitting procedure using spin-echo shapes indirectly: The information of 1H echo shapes is transferred to the 13C signal amplitude through 1H–13C cross polarization and then the curve fitting is made using the 13C signal amplitude. The 13C signal is detected under 1H dipolar decoupling and magic angle spinning, resulting in the incorporation of 13C chemical-shift resolution. Imaging information is included in the 13C signal by application of phase-encoding gradients. The second moment images obtained can reflect the molecular mobility at every molecular site separated by 13C chemical shifts, yielding detailed information on the molecular mobility. The method is demonstrated by spatially 1D experiments performed on a model sample.  相似文献   

12.
We report 13C–27Al double resonance experiments (REDOR and TRAPDOR) on several aluminum organic compounds with the aim of detecting 13C–27Al dipolar couplings and distances in solids. The 13C and 27Al pulses are applied to the same probe channel because their resonance frequencies are in close proximity. The different possibilities of controlling the efficiency of the TRAPDOR approach (by varying the 27Al RF amplitude and the MAS frequency) are investigated. The results indicate that TRAPDOR is superior to REDOR in resolving differences in 13C–27Al distances when choosing the proper experimental conditions. Where known, the crystal structure data are in qualitative agreement with the distance information extracted from our experiments. The experiment should be very valuable in different fields of solid state chemistry, where the interaction of organic and inorganic sample fractions is of fundamental importance.  相似文献   

13.
Solid-state spin–lattice relaxation in the rotating frame permits the investigation of dynamic processes with correlation times in the range of microseconds. The relaxation process in organic solids is driven by the fluctuation of the local magnetic field due to the dipole–dipole interaction of the probe nuclei (13C,15N) with 1H in close proximity. However, its effect is often hidden by a competing relaxation process due to the contact between the rotating frame 13C/15N Zeeman and 1H dipolar reservoirs. In most cases the latter process becomes superior for the commonly applied low and moderate spin-lock fields and practically does not provide information about the molecular dynamics. To suppress this undesired process and to expand the dynamic range of T1 ρ experiments, we present two approaches. The first one uses a resonance offset of the frequency of the spin-lock irradiation, which leads to a significant enhancement of the effective spin-lock frequency without the application of destructive high transmitter powers. We derive the theory and demonstrate the applicability of the method on various model compounds. The second approach utilizes heteronuclear 1H decoupling during the 13C/15N spin-lock irradiation which disrupts the contact between the 13C/15N Zeeman and 1H dipolar reservoirs. We demonstrate the method and discuss the results qualitatively.  相似文献   

14.
A recently proposed 13C–1H recoupling sequence operative under fast magic-angle spinning (MAS) [K. Takegoshi, T. Terao, Solid State Nucl. Magn. Reson. 13 (1999) 203–212.] is applied to observe 13C–1H and 15N–1H dipolar powder patterns in the 1H–15N–13C–1H system of a peptide bond. Both patterns are correlated by 15N-to-13C cross polarization to observe one- or two-dimensional (1D or 2D) correlation spectra, which can be simulated by using a simple analytical expression to determine the H–N–C–H dihedral angle. The 1D and 2D experiments were applied to N-acetyl[1,2-13C,15N] -valine, and the peptide φ angle was determined with high precision by the 2D experiment to be ±155.0°±1.2°. The positive one is in good agreement with the X-ray value of 154°±5°. The 1D experiment provided the value of φ=±156.0°±0.8°.  相似文献   

15.
A magic-angle spinning (MAS) probe has been constructed which allows the sample to be cooled with helium, while the MAS bearing and drive gases are nitrogen. The sample can be cooled to 25 K using roughly 3 L/h of liquid helium, while the 4-mm diameter rotor spins at 6.7 kHz with good stability (±5 Hz) for many hours. Proton decoupling fields up to at least 130 kHz can be applied. This helium-cooled MAS probe enables a variety of one-dimensional and two-dimensional NMR experiments on biomolecular solids and other materials at low temperatures, with signal-to-noise proportional to 1/T. We show examples of low-temperature 13C NMR data for two biomolecular samples, namely the peptide Aβ14–23 in the form of amyloid fibrils and the protein HP35 in frozen glycerol/water solution. Issues related to temperature calibration, spin–lattice relaxation at low temperatures, paramagnetic doping of frozen solutions, and 13C MAS NMR linewidths are discussed.  相似文献   

16.
This work explores the utility of simple rotary resonance experiments for the determination of the magnitude and orientation of 13C chemical shift tensors relative to one or more 13C–14N internuclear axes from 13C magic-angle-spinning NMR experiments. The experiment relies on simultaneous recoupling of the anisotropic 13C chemical shift and 13C–14N dipole–dipole coupling interactions using 2D rotary resonance NMR with RF irradiation on the 13C spins only. The method is demonstrated by experiments and numerical simulations for the 13Cα spins in powder samples of -alanine and glycine with 13C in natural abundance. To investigate the potential of the experiment for determination of relative/absolute tensor orientations and backbone dihedral angles in peptides, the influence from long-range dipolar coupling to sequential 14N spins in a peptide chain (14Ni13Cαi14Ni+1 and 14Ni+113C′i14Ni three-spin systems) as well as residual quadrupolar–dipolar coupling cross-terms is analyzed numerically.  相似文献   

17.
Improved methods for three-dimensional TROSY-Type HCCH correlation involving protons of negligible CSA are presented. The TROSY approach differs from the conventional approach of heteronuclear decoupling in evolution and detection periods by not mixing fast and slowly relaxing coherences and usually suppressing the former. Pervushin et al. (J. Am. Chem. Soc. 120, 6394–6400 (1998)) have proposed a 3D TROSY-type HCCH experiment where the TROSY approach is applied only in one of the 13C dimensions. A new pulse sequence applying the TROSY approach in both indirect dimensions is advantageous when the TROSY effect of the carbons is large or when a relatively high resolution is required. For lower resolutions or moderate TROSY effects we show that it is possible to combine the best of both worlds, namely to suppress heteronuclear couplings without mixing fast and slowly relaxing coherences while at the same time superimpose the two components and thus have both contribute to the detected signal. That is possible using the novel technique of Spin-State-Selective Time-Proportional Phase Incrementation (S3 TPPI). The new 3D S3 TPPI TROSY HCCH method is demonstrated on a 13C,15N-labeled protein sample, RAP 18–112 (N-terminal domain of α2-macroglobulin receptor associated protein), at 750 MHz and average sensitivity enhancements of 10% are obtained for the cross peaks in comparison to methods based on conventional decoupling on one of the carbons or on TROSY on both carbons.  相似文献   

18.
The acquisition of bidimensional heteronuclear nuclear magnetic resonance local field spectra under moderately fast magic-angle spinning (MAS) conditions is discussed. It is shown both experimentally and with the aid of numerical simulations on multispin systems that when sufficiently fast MAS rates are employed, quantitative dipolar sideband patterns from directly bonded spin pairs can be acquired in the absence of 1H–1H multiple-pulse homonuclear decoupling even for “real” organic solids. The MAS speeds involved are well within the range of commercially available systems (10–14 kHz) and provide sidebands with sufficient intensity to enable a reliable quantification of heteronuclear dipolar couplings from methine groups. Simulations and experiments show that useful information can be extracted in this manner even from more tightly coupled –CH2– moieties, although the agreement with the patterns simulated solely on the basis of heteronuclear interactions is not in this case as satisfactory as for methines. Preliminary applications of this simple approach to the analysis of molecular motions in solids are presented; characteristics and potential extensions of the method are also discussed.  相似文献   

19.
To provide the most efficient conditions for spin decoupling with least RF power, master calibration curves are provided for the maximum centerband amplitude, and the minimum amplitude for the largest cycling sideband, resulting from STUD+ adiabatic decoupling applied during a single free induction decay. The principal curve is defined as a function of the four most critical experimental input parameters: the maximum amplitude of the RF field,RFmax, the length of the sech/tanh pulse,Tp, the extent of the frequency sweep,bwdth,and the coupling constant,Jo. Less critical parameters, the effective (or actual) decoupled bandwidth,bweff, and the sech/tanh truncation factor, β, which become more important asbwdthis decreased, are calibrated in separate curves. The relative importance of nine additional factors in determining optimal decoupling performance in a single transient are considered. Specific parameters for efficient adiabatic decoupling can be determined via a set of four equations which will be most useful for13C decoupling, covering the range of one-bond13C1H coupling constants from 125 to 225 Hz, and decoupled bandwidths of 7 to 100 kHz, with a bandwidth of 100 kHz being the requirement for a 2 GHz spectrometer. The four equations are derived from a recent vector model of adiabatic decoupling, and experiment, supported by computer simulations. The vector model predicts an inverse linear relation between the centerband and maximum sideband amplitudes, and it predicts a simple parabolic relationship between maximum sideband amplitude and the productJoTp. The ratiobwdth/(RFmax)2can be viewed as a characteristic time scale, τc, affecting sideband levels, with τcTpgiving the most efficient STUD+ decoupling, as suggested by the adiabatic condition. Functional relationships betweenbwdthand less critical parameters,bweffand β, for efficient decoupling can be derived from Bloch-equation calculations of the inversion profile for a single sech/tanh pulse. Residual splitting of the centerband, normally associated with incomplete or inefficient decoupling, is not seen in sech/tanh decoupling and therefore cannot be used as a measure of adiabatic decoupling efficiency. The calibrated experimental performance levels achieved in this study are within 20% of theoretical performance levels derived previously for ideal sech/tanh decoupling at high power, indicating a small scope for further improvement at practical RF power levels. The optimization procedures employed here will be generally applicable to any good combination of adiabatic inversion pulse and phase cycle.  相似文献   

20.
PurposeOver the past decade, many techniques have been developed to reduce radiofrequency (RF) power deposition associated with proton decoupling in in vivo Carbon-13 (13C) magnetic resonance spectroscopy (MRS). In this work we propose a new strategy that uses data under-sampling to achieve reduction in RF power deposition.Materials and methodsEssentially, proton decoupling is required only during randomly selected segments of data acquisition. By taking advantage of the sparse spectral pattern of the carboxylic/amide region of in vivo 13C spectra of brain, we developed an iterative algorithm to reconstruct spectra from randomly under-sampled data. Fully sampled data were used as references. Reconstructed spectra were compared with the fully sampled references and evaluated using residuals and relative signal intensity errors.ResultsNumerical simulations and in vivo experiments at 7 Tesla demonstrated that this novel decoupling and data processing strategy can effectively reduce decoupling power deposition by greater than 30%.ConclusionThis study proposes and evaluates a novel approach to acquire 13C data with reduced proton decoupling power deposition and reconstruct in vivo 13C spectra of carboxylic/amide metabolite signals using randomly under-sampled data. Because proton decoupling is not needed over a significant portion of data acquisition, this novel approach can effectively reduce the required decoupling power and thus SAR. It opens the possibility of performing in vivo 13C experiments of human brain at very high magnetic fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号