首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We prove that every H(i) subset H of a connected space X such that there is no proper connected subset of X containing H, contains at least two non-cut points of X. This is used to prove that a connected space X is a COTS with endpoints if and only if X has at most two non-cut points and has an H(i) subset H such that there is no proper connected subset of X containing H. Also we obtain some other characterizations of COTS with endpoints and some characterizations of the closed unit interval.  相似文献   

2.
We prove that: (i) a pathwise connected, Hausdorff space which has a continuous selection is homeomorphic to one of the following four spaces: singleton, [0,1), [0,1] or the long lineL, (ii) a locally connected (Hausdorff) space which has a continuous selection must be orderable, and (iii) an infinite connected, Hausdorff space has exactly two continuous selections if and only if it is compact and orderable. We use these results to give various characterizations of intervals via continuous selections. For instance, (iv) a topological spaceX is homeomorphic to [0,1] if (and only if)X is infinite, separable, connected, Hausdorff space and has exactly two continuous selections, and (v) a topological spaceX is homeomorphic to [0,1) if (and only if) one of the following equivalent conditions holds: (a)X is infinite, Hausdorff, separable, pathwise connected and has exactly one continuous selection; (b)X is infinite, separable, locally connected and has exactly one continuous selection; (c)X is infinite, metric, locally connected and has exactly one continuous selection. Three examples are exhibited which demonstrate the necessity of various assumptions in our results.  相似文献   

3.
Let X be a continuum. The n-fold hyperspace Cn(X), n<∞, is the space of all nonempty compact subsets of X with the Hausdorff metric. Four types of local connectivity at points of Cn(X) are investigated: connected im kleinen, locally connected, arcwise connected im kleinen and locally arcwise connected. Characterizations, as well as necessary or sufficient conditions, are obtained for Cn(X) to have one or another of the local connectivity properties at a given point. Several results involve the property of Kelley or C*-smoothness. Some new results are obtained for C(X), the space of subcontinua of X. A class of continua X is given for which Cn(X) is connected im kleinen only at subcontinua of X and for which any two such subcontinua must intersect.  相似文献   

4.
A completely regular space X is called nearly pseudocompact if υX?X is dense in βX?X, where βX is the Stone-?ech compactification of X and υX is its Hewitt realcompactification. After characterizing nearly pseudocompact spaces in a variety of ways, we show that X is nearly pseudocompact if it has a dense locally compact pseudocompact subspace, or if no point of X has a closed realcompact neighborhood. Moreover, every nearly pseudocompact space X is the union of two regular closed subsets X1, X2 such that Int X1 is locally compact, no points of X2 has a closed realcompact neighborhood, and Int(X1?X2)=?. It follows that a product of two nearly pseudocompact spaces, one of which is locally compact, is also nearly pseudocompact.  相似文献   

5.
In 1957 Robert Ellis proved that a group with a locally compact Hausdorff topology T making all translations continuous also has jointly continuous multiplication and continuous inversion, and is thus a topological group. The theorem does not apply to locally compact asymmetric spaces such as the reals with addition and the topology of upper open rays. We first show a bitopological Ellis theorem, and then introduce a generalization of locally compact Hausdorff, called locally skew compact, and a topological dual, Tk, to obtain the following asymmetric Ellis theorem which applies to the example above:Whenever (X,⋅,T) is a group with a locally skew compact topology making all translations continuous, then multiplication is jointly continuous in both (X,⋅,T) and (X,⋅,Tk), and inversion is a homeomorphism between (X,T) and (X,Tk).This generalizes the classical Ellis theorem, because T=Tk when (X,T) is locally compact Hausdorff.  相似文献   

6.
Let X be a topological space, f:XX be a continuous map, and Y be a compact, connected and closed subset of X. In this paper we show that, if the boundary XY contains exactly one point v and f(v)∈Y, then Y contains a minimal set of f.  相似文献   

7.
The present paper considers the existence of continuous roots of algebraic equations with coefficients being continuous functions defined on compact Hausdorff spaces. For a compact Hausdorff space X, C(X) denotes the Banach algebra of all continuous complex-valued functions on X with the sup norm ∥⋅. The algebra C(X) is said to be algebraically closed if each monic algebraic equation with C(X) coefficients has a root in C(X). First we study a topological characterization of a first-countable compact (connected) Hausdorff space X such that C(X) is algebraically closed. The result has been obtained by Countryman Jr, Hatori-Miura and Miura-Niijima and we provide a simple proof for metrizable spaces.Also we consider continuous approximate roots of the equation znf=0 with respect to z, where fC(X), and provide a topological characterization of compact Hausdorff space X with dimX?1 such that the above equation has an approximate root in C(X) for each fC(X), in terms of the first ?ech cohomology of X.  相似文献   

8.
A topological space X is called a CO space, if every closed subset of X is homeomorphic to some clopen subset of X. Every ordinal with its order topology is a CO space. This work gives a complete classification of CO spaces which are continuous images of compact ordered spaces.  相似文献   

9.
Yosida frames     
A Yosida frame is an algebraic frame in which every compact element is a meet of maximal elements. Yosida frames are used to abstractly characterize the frame of z-ideals of a ring of continuous functions C(X), when X is a compact Hausdorff space. An algebraic frame in which the meet of any two compact elements is compact is Yosida precisely when it is “finitely subfit”; that is, if and only if for each pair of compact elements a<b, there is a z (not necessarily compact) such that az<1=bz. This is used to prove that if L is an algebraic frame in which the meet of any two compact elements is compact, and L has disjointification and dim(L)=1, then it is Yosida. It is shown that this result fails with almost any relaxation of the hypotheses. The paper closes with a number of examples, and a characterization of the Bézout domains in which the frame of semiprime ideals is Yosida frame.  相似文献   

10.
We introduce a new cardinal invariant, core of a space, defined for any locally compact Hausdorff space X and denoted by cor(X). Locally compact spaces of countable core generalize locally compact σ-compact spaces in a way that is slightly exotic, but still quite natural. We show in Section 1 that under a broad range of conditions locally compact spaces of countable core must be σ-compact. In particular, normal locally compact spaces of countable core and realcompact locally compact spaces of countable core are σ-compact. Perfect mappings preserve the class of spaces of countable core in both directions (Section 2). The Alexandroff compactification aX is weakly first countable at the Alexandroff point a if and only if cor(X)=ω (Section 3). Two examples of non-σ-compact locally compact spaces of countable core are discussed in Section 3. We also extend the well-known theorem of Alexandroff and Urysohn on the cardinality of perfectly normal compacta to compacta satisfying a weak version of perfect normality. Several open problems are formulated.  相似文献   

11.
A metric space (X,d) has the de Groot property GPn if for any points x0,x1,…,xn+2∈X there are positive indices i,j,k?n+2 such that ij and d(xi,xj)?d(x0,xk). If, in addition, k∈{i,j} then X is said to have the Nagata property NPn. It is known that a compact metrizable space X has dimension dim(X)?n iff X has an admissible GPn-metric iff X has an admissible NPn-metric.We prove that an embedding f:(0,1)→X of the interval (0,1)⊂R into a locally connected metric space X with property GP1 (resp. NP1) is open, provided f is an isometric embedding (resp. f has distortion Dist(f)=‖fLip⋅‖f−1Lip<2). This implies that the Euclidean metric cannot be extended from the interval [−1,1] to an admissible GP1-metric on the triode T=[−1,1]∪[0,i]. Another corollary says that a topologically homogeneous GP1-space cannot contain an isometric copy of the interval (0,1) and a topological copy of the triode T simultaneously. Also we prove that a GP1-metric space X containing an isometric copy of each compact NP1-metric space has density ?c.  相似文献   

12.
Let X be a Hausdorff topological space and exp(X) be the space of all (nonempty) closed subsets of a space X with the Vietoris topology. We consider hereditary normality-type properties of exp(X). In particular, we prove that if exp(X) is hereditarily D-normal, then X is a metrizable compact space.  相似文献   

13.
The disconnection number d(X) is the least number of points in a connected topological graph X such that removal of d(X) points will disconnect X (Nadler, 1993 [6]). Let Dn denote the set of all homeomorphism classes of topological graphs with disconnection number n. The main result characterizes the members of Dn+1 in terms of four possible operations on members of Dn. In addition, if X and Y are topological graphs and X is a subspace of Y with no endpoints, then d(X)?d(Y) and Y obtains from X with exactly d(Y)−d(X) operations. Some upper and lower bounds on the size of Dn are discussed.The algorithm of the main result has been implemented to construct the classes Dn for n?8, to estimate the size of D9, and to obtain information on certain subclasses such as non-planar graphs (n?9) and regular graphs (n?10).  相似文献   

14.
Recently, De Groot's conjecture that cmp X = def X holds for every separable and metrizable space X has been negatively resolved by Pol. In previous efforts to resolve De Groot's conjecture various functions like cmp have been introduced. A new inequality between two of these functions is established. Many examples which have been constructed so far in relation with the conjecture are obtained by attaching a locally compact space to a compact space. An upper bound for the compactness deficiency def of the resulting space is given.  相似文献   

15.
Let X be a complete-metrizable, separable ANR. The following two facts are shown: (a) if X admits a topological group structure, then either this is a Lie group structure or X is an l2-manifold; (b) If X is a closed convex set in a complete metric linear space, then X is either locally compact or homeomorphic to l2.  相似文献   

16.
For a compact Hausdorff space X, C(X) denotes the algebra of all complex-valued continuous functions on X. For a positive integer n, we say that C(X) is n-th root closed if, for each fC(X), there exists gC(X) such that f=gn. It is shown that, for each integer m?2, there exists a compact Hausdorff space Xm such that C(Xm) is m-th root closed, but not n-th root closed for each integer n relatively prime to m. This answers a question posed by Countryman Jr. [R.S. Countryman Jr., On the characterization of compact Hausdorff X for which C(X) is algebraically closed, Pacific J. Math. 20 (1967) 433-438] et al.  相似文献   

17.
For a Whitney preserving map f:XG we show the following: (a) If X is arcwise connected and G is a graph which is not a simple closed curve, then f is a homeomorphism; (b) If X is locally connected and G is a simple closed curve, then X is homeomorphic to either the unit interval [0,1], or the unit circle S1. As a consequence of these results, we characterize all Whitney preserving maps between finite graphs. We also show that every hereditarily weakly confluent Whitney preserving map between locally connected continua is a homeomorphism.  相似文献   

18.
A continuous zero-selection f for the Vietoris hyperspace F(X) of the nonempty closed subsets of a space X is a Vietoris continuous map f:F(X)→X which assigns to every nonempty closed subset an isolated point of it. It is well known that a compact space X has a continuous zero-selection if and only if it is an ordinal space, or, equivalently, if X can be mapped onto an ordinal space by a continuous one-to-one surjection. In this paper, we prove that a compact space X has an upper semi-continuous set-valued zero-selection for its Vietoris hyperspace F(X) if and only if X can be mapped onto an ordinal space by a continuous finite-to-one surjection.  相似文献   

19.
A metric space X is straight if for each finite cover of X by closed sets, and for each real valued function f on X, if f is uniformly continuous on each set of the cover, then f is uniformly continuous on the whole of X. A locally connected space is straight iff it is uniformly locally connected (ULC). It is easily seen that ULC spaces are stable under finite products. On the other hand the product of two straight spaces is not necessarily straight. We prove that the product X×Y of two metric spaces is straight if and only if both X and Y are straight and one of the following conditions holds:
(a)
both X and Y are precompact;
(b)
both X and Y are locally connected;
(c)
one of the spaces is both precompact and locally connected.
In particular, when X satisfies (c), the product X×Z is straight for every straight space Z.Finally, we characterize when infinite products of metric spaces are ULC and we completely solve the problem of straightness of infinite products of ULC spaces.  相似文献   

20.
The aim of this paper is to discuss the homotopy properties of locally well-behaved spaces. First, we state a nerve theorem. It gives sufficient conditions under which there is a weak n-equivalence between the nerve of a good cover and its underlying space. Then we conclude that for any (n−1)-connected, locally (n−1)-connected compact metric space X which is also n-semilocally simply connected, the nth homotopy group of X, πn(X), is finitely presented. This result allows us to provide a new proof for a generalization of Shelah?s theorem (Shelah, 1988 [18]) to higher homotopy groups (Ghane and Hamed, 2009 [8]). Also, we clarify the relationship between two homotopy properties of a topological space X, the property of being n-homotopically Hausdorff and the property of being n-semilocally simply connected. Further, we give a way to recognize a nullhomotopic 2-loop in 2-dimensional spaces. This result will involve the concept of generalized dendrite which introduce here. Finally, we prove that each 2-loop is homotopic to a reduced 2-loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号