首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The authors give a consistent affirmative response to a question of Juhász, Soukup and Szentmiklóssy: If GCH fails, there are (many) extraresolvable, not maximally resolvable Tychonoff spaces. They show also in ZFC that for ω<λ?κ, no maximal λ-independent family of λ-partitions of κ is ω-resolvable. In topological language, that theorem translates to this: A dense, ω-resolvable subset of a space of the form (DI(λ)) is λ-resolvable.  相似文献   

2.
A space X is κ-resolvable (resp. almost κ-resolvable) if it contains κ dense sets that are pairwise disjoint (resp. almost disjoint over the ideal of nowhere dense subsets of X).Answering a problem raised by Juhász, Soukup, and Szentmiklóssy, and improving a consistency result of Comfort and Hu, we prove, in ZFC, that for every infinite cardinal κ there is an almost κ2-resolvable but not ω1-resolvable space of dispersion character κ.  相似文献   

3.
In a recent paper O. Pavlov proved the following two interesting resolvability results:
(1)
If a T1-space X satisfies Δ(X)>ps(X) then X is maximally resolvable.
(2)
If a T3-space X satisfies Δ(X)>pe(X) then X is ω-resolvable.
Here ps(X) (pe(X)) denotes the smallest successor cardinal such that X has no discrete (closed discrete) subset of that size and Δ(X) is the smallest cardinality of a non-empty open set in X.In this note we improve (1) by showing that Δ(X)>ps(X) can be relaxed to Δ(X)?ps(X), actually for an arbitrary topological space X. In particular, if X is any space of countable spread with Δ(X)>ω then X is maximally resolvable.The question if an analogous improvement of (2) is valid remains open, but we present a proof of (2) that is simpler than Pavlov's.  相似文献   

4.
Say that a cardinal number κ is small relative to the space X if κ<Δ(X), where Δ(X) is the least cardinality of a non-empty open set in X. We prove that no Baire metric space can be covered by a small number of discrete sets, and give some generalizations. We show a ZFC example of a regular Baire σ-space and a consistent example of a normal Baire Moore space which can be covered by a small number of discrete sets. We finish with some remarks on linearly ordered spaces.  相似文献   

5.
In this paper, we show the following statements:
(1)
For any cardinal κ, there exists a pseudocompact centered-Lindelöf Tychonoff space X such that we(X)?κ.
(2)
Assuming 02=12, there exists a centered-Lindelöf normal space X such that we(X)?ω1.
  相似文献   

6.
We show (in ZFC) that if X is a compact homogeneous Hausdorff space then |X|?2t(X), where t(X) denotes the tightness of X. It follows that under GCH the character and the tightness of such a space coincide.  相似文献   

7.
Let G be a topological group with the identity element e. Given a space X, we denote by Cp(X,G) the group of all continuous functions from X to G endowed with the topology of pointwise convergence, and we say that X is: (a) G-regular if, for each closed set FX and every point xX?F, there exist fCp(X,G) and gG?{e} such that f(x)=g and f(F)⊆{e}; (b) G?-regular provided that there exists gG?{e} such that, for each closed set FX and every point xX?F, one can find fCp(X,G) with f(x)=g and f(F)⊆{e}. Spaces X and Y are G-equivalent provided that the topological groups Cp(X,G) and Cp(Y,G) are topologically isomorphic.We investigate which topological properties are preserved by G-equivalence, with a special emphasis being placed on characterizing topological properties of X in terms of those of Cp(X,G). Since R-equivalence coincides with l-equivalence, this line of research “includes” major topics of the classical Cp-theory of Arhangel'ski? as a particular case (when G=R).We introduce a new class of TAP groups that contains all groups having no small subgroups (NSS groups). We prove that: (i) for a given NSS group G, a G-regular space X is pseudocompact if and only if Cp(X,G) is TAP, and (ii) for a metrizable NSS group G, a G?-regular space X is compact if and only if Cp(X,G) is a TAP group of countable tightness. In particular, a Tychonoff space X is pseudocompact (compact) if and only if Cp(X,R) is a TAP group (of countable tightness). Demonstrating the limits of the result in (i), we give an example of a precompact TAP group G and a G-regular countably compact space X such that Cp(X,G) is not TAP.We show that Tychonoff spaces X and Y are T-equivalent if and only if their free precompact Abelian groups are topologically isomorphic, where T stays for the quotient group R/Z. As a corollary, we obtain that T-equivalence implies G-equivalence for every Abelian precompact group G. We establish that T-equivalence preserves the following topological properties: compactness, pseudocompactness, σ-compactness, the property of being a Lindelöf Σ-space, the property of being a compact metrizable space, the (finite) number of connected components, connectedness, total disconnectedness. An example of R-equivalent (that is, l-equivalent) spaces that are not T-equivalent is constructed.  相似文献   

8.
Much of General Topology addresses this issue: Given a function fC(Y,Z) with YY and ZZ, find , or at least , such that ; sometimes Z=Z is demanded. In this spirit the authors prove several quite general theorems in the context Y=κ(XI)=iIXi in the κ-box topology (that is, with basic open sets of the form iIUi with Ui open in Xi and with UiXi for <κ-many iI). A representative sample result, extending to the κ-box topology some results of Comfort and Negrepontis, of Noble and Ulmer, and of Hušek, is this.
Theorem. Letω?κ?α (that means: κ<α, and[β<αandλ<κ]⇒βλ<α) with α regular,be a set of non-empty spaces with eachd(Xi)<α,π[Y]=XJfor each non-emptyJIsuch that|J|<α, and the diagonal in Z be the intersection of <α-many regular-closed subsets ofZ×Z. Then (a) Y is pseudo-(α,α)-compact, (b) for everyfC(Y,Z)there isJ∈[I]<αsuch thatf(x)=f(y)wheneverxJ=yJ, and (c) every such f extends to.  相似文献   

9.
Let (q(X),⊆) denote the lattice consisting of the set q(X) of all quasi-uniformities on a set X, ordered by set-theoretic inclusion ⊆. We observe that a quasi-uniformity on X is the supremum of atoms of (q(X),⊆) if and only if it is totally bounded and transitive. Each quasi-uniformity on X that is totally bounded or has a linearly ordered base is shown to be the infimum of anti-atoms of (q(X),⊆). Furthermore, each quasi-uniformity U on X such that the topology of the associated supremum uniformity Us is resolvable has the latter property.  相似文献   

10.
Let Cα(X,Y) be the set of all continuous functions from X to Y endowed with the set-open topology where α is a hereditarily closed, compact network on X which is closed under finite unions. We proved that the density of the space Cα(X,Y) is at most iw(X)⋅d(Y) where iw(X) denotes the i-weight of the Tychonoff space X, and d(Y) denotes the density of the space Y when Y is an equiconnected space with equiconnecting function Ψ, and Y has a base consists of Ψ-convex subsets of Y. We also prove that the equiconnectedness of the space Y cannot be replaced with pathwise connectedness of Y. In fact, it is shown that for each infinite cardinal κ, there is a pathwise connected space Y such that π-weight of Y is κ, but Souslin number of the space Ck([0,1],Y) is κ2.  相似文献   

11.
In 1957 Robert Ellis proved that a group with a locally compact Hausdorff topology T making all translations continuous also has jointly continuous multiplication and continuous inversion, and is thus a topological group. The theorem does not apply to locally compact asymmetric spaces such as the reals with addition and the topology of upper open rays. We first show a bitopological Ellis theorem, and then introduce a generalization of locally compact Hausdorff, called locally skew compact, and a topological dual, Tk, to obtain the following asymmetric Ellis theorem which applies to the example above:Whenever (X,⋅,T) is a group with a locally skew compact topology making all translations continuous, then multiplication is jointly continuous in both (X,⋅,T) and (X,⋅,Tk), and inversion is a homeomorphism between (X,T) and (X,Tk).This generalizes the classical Ellis theorem, because T=Tk when (X,T) is locally compact Hausdorff.  相似文献   

12.
For X a separable metric space define p(X) to be the smallest cardinality of a subset Z of X which is not a relative γ-set in X, i.e., there exists an ω-cover of X with no γ-subcover of Z. We give a characterization of p(ω2) and p(ωω) in terms of definable free filters on ω which is related to the pseudo-intersection number p. We show that for every uncountable standard analytic space X that either p(X)=p(ω2) or p(X)=p(ωω). We show that the following statements are each relatively consistent with ZFC: (a) p=p(ωω)<p(ω2) and (b) p<p(ωω)=p(ω2)  相似文献   

13.
Let (X,T) be a topological dynamical system and F be a Furstenberg family (a collection of subsets of Z+ with hereditary upward property). A point xX is called an F-transitive one if {nZ+:TnxU}∈F for every non-empty open subset U of X; the system (X,T) is called F-point transitive if there exists some F-transitive point. In this paper, we aim to classify transitive systems by F-point transitivity. Among other things, it is shown that (X,T) is a weakly mixing E-system (resp. weakly mixing M-system, HY-system) if and only if it is {D-sets}-point transitive (resp. {central sets}-point transitive, {weakly thick sets}-point transitive).It is shown that every weakly mixing system is Fip-point transitive, while we construct an Fip-point transitive system which is not weakly mixing. As applications, we show that every transitive system with dense small periodic sets is disjoint from every totally minimal system and a system is Δ?(Fwt)-transitive if and only if it is weakly disjoint from every P-system.  相似文献   

14.
We consider which ordinals, with the order topology, can be Stone-?ech remainders of which spaces of the form ψ(κ,M), where ω?κ is a cardinal number and Mω[κ] is a maximal almost disjoint family of countable subsets of κ (MADF). The cardinality of the continuum, denoted c, and its successor cardinal, c+, play important roles. We show that if κ>c+, then no ψ(κ,M) has any ordinal as a Stone-?ech remainder. If κ?c then for every ordinal δ<κ+ there exists Mδω[κ], a MADF, such that βψ(κ,Mδ)?ψ(κ,Mδ) is homeomorphic to δ+1. For κ=c+, βψ(κ,Mδ)?ψ(κ,Mδ) is homeomorphic to δ+1 if and only if c+?δ<c+ω.  相似文献   

15.
For a Tychonoff space X, we use ↓USC(X) and ↓C(X) to denote the families of the regions below all upper semi-continuous maps and of the regions below all continuous maps from X to I=[0,1], respectively. In this paper, we consider the spaces ↓USC(X) and ↓C(X) topologized as subspaces of the hyperspace Cld(X×I) consisting of all non-empty closed sets in X×I endowed with the Vietoris topology. We shall prove that ↓USC(X) is homeomorphic (≈) to the Hilbert cube Q=ω[−1,1] if and only if X is an infinite compact metric space. And we shall prove that (↓USC(X),↓C(X))≈(Q,c0), where , if and only if ↓C(X)≈c0 if and only if X is a compact metric space and the set of isolated points is not dense in X.  相似文献   

16.
If a Tychonoff space X is dense in a Tychonoff space Y, then Y is called a Tychonoff extension of X. Two Tychonoff extensions Y1 and Y2 of X are said to be equivalent, if there exists a homeomorphism which keeps X pointwise fixed. This defines an equivalence relation on the class of all Tychonoff extensions of X. We identify those extensions of X which belong to the same equivalence classes. For two Tychonoff extensions Y1 and Y2 of X, we write Y2?Y1, if there exists a continuous function which keeps X pointwise fixed. This is a partial order on the set of all (equivalence classes of) Tychonoff extensions of X. If a Tychonoff extension Y of X is such that Y\X is a singleton, then Y is called a one-point extension of X. Let T(X) denote the set of all one-point extensions of X. Our purpose is to study the order structure of the partially ordered set (T(X),?). For a locally compact space X, we define an order-anti-isomorphism from T(X) onto the set of all nonempty closed subsets of βX\X. We consider various sets of one-point extensions, including the set of all one-point locally compact extensions of X, the set of all one-point Lindelöf extensions of X, the set of all one-point pseudocompact extensions of X, and the set of all one-point ?ech-complete extensions of X, among others. We study how these sets of one-point extensions are related, and investigate the relation between their order structure, and the topology of subspaces of βX\X. We find some lower bounds for cardinalities of some of these sets of one-point extensions, and in a concluding section, we show how some of our results may be applied to obtain relations between the order structure of certain subfamilies of ideals of C(X), partially ordered with inclusion, and the topology of subspaces of βX\X. We leave some problems open.  相似文献   

17.
Komjáth in 1984 proved that, for each sequence (An) of analytic subsets of a Polish space X, if lim supnHAn is uncountable for every Hω[N] then ?nGAn is uncountable for some Gω[N]. This fact, by our definition, means that the σ-ideal [X]?ω has property (LK). We prove that every σ-ideal generated by X/E has property (LK), for an equivalence relation EX2 of type Fσ with uncountably many equivalence classes. We also show the parametric version of this result. Finally, the invariance of property (LK) with respect to various operations is studied.  相似文献   

18.
A metric space (X,d) has the de Groot property GPn if for any points x0,x1,…,xn+2∈X there are positive indices i,j,k?n+2 such that ij and d(xi,xj)?d(x0,xk). If, in addition, k∈{i,j} then X is said to have the Nagata property NPn. It is known that a compact metrizable space X has dimension dim(X)?n iff X has an admissible GPn-metric iff X has an admissible NPn-metric.We prove that an embedding f:(0,1)→X of the interval (0,1)⊂R into a locally connected metric space X with property GP1 (resp. NP1) is open, provided f is an isometric embedding (resp. f has distortion Dist(f)=‖fLip⋅‖f−1Lip<2). This implies that the Euclidean metric cannot be extended from the interval [−1,1] to an admissible GP1-metric on the triode T=[−1,1]∪[0,i]. Another corollary says that a topologically homogeneous GP1-space cannot contain an isometric copy of the interval (0,1) and a topological copy of the triode T simultaneously. Also we prove that a GP1-metric space X containing an isometric copy of each compact NP1-metric space has density ?c.  相似文献   

19.
20.
We show that it is relatively consistent with ZFC that ω2 is arbitrarily large and every sequence s=〈sα:α<ω2〉 of infinite cardinals with sα?ω2 is the cardinal sequence of some locally compact scattered space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号