首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A theory of diffusion induced grain boundary migration (DIGM) is presented for high temperatures where volume diffusion of solute atoms out of the grain boundary is important. It is shown that due to the presence of a gradient term in the expression for the free energy of solid solution, even a relatively small discontinuity in the solute distribution across the gain boundary provides enough driving force for grain boundary migration. From the expression obtained for the grain boundary velocity the coefficient for the Ni diffusion across the grain boundaries in a Cu(Ni) polycrystal has been estimated.  相似文献   

2.
An efficient algorithm for accurately simulating curvature flow for large networks of curves in two dimensions and surfaces in three dimensions on uniform grids is proposed. This motion arises in the technologically important problem of simulating grain boundary motion in polycrystalline materials. In this formulation grain boundaries are zero-level sets of signed distance functions. Curvature motion is achieved by first diffusing locally maintained signed distance functions followed by a reinitialization step. A technique is devised to allow a single signed distance function to represent a large subset of spatially separated grains. Hundreds of thousands of grains can be simulated using a small number of signed distance functions (in this work, 32 in two dimensions and 64 in three dimensions are more than sufficient) using modest computational hardware.  相似文献   

3.
A model is proposed for calculating the co-energy of surface and grain boundary (GB) by the modified analytical embedded atom method (MAEAM). As example, the energy densities Ed of the two adjacent grains are obtained when their (0 0 1) twist GB meets the free surface (h1 k1 0)/(h2 k2 0) of Ag film. The period along the boundary line on the surface is found and the energy density is calculated for the situations either with or without periodicity. The results show that, the energy value achieved via this model can be stable even for most grains with boundary line smaller than 100 nm. Among the grains with (h k 0) surface, (1 0 0) grains should be favored and grow fastest when they meet (1 1 0) grains.  相似文献   

4.
The mechanical response of symmetric tilt grain boundaries (GBs) in silicon bicrystals under shear loading are characterized using molecular dynamics simulations. It is seen that under shear, high-angle GBs namely Σ5 and Σ13 having a rotation axis [0 0 1] demonstrate coupled GB motion, such that the displacement of grains parallel to the GB interface is accompanied by normal GB motion. An atomic-scale characterization revealed that concerted rotations of silicon tetrahedra within the GB are the primary mechanisms leading to the coupled GB motion. Interestingly, so far, this phenomenon has only been examined in detail for metallic systems. A distinguishing feature of the coupled GB motion observed for the silicon symmetric tilt bicrystals as compared to metallic bicrystals is the fact that in the absence of shear, spontaneous coupled motion is not observed at high temperatures.  相似文献   

5.
Amol Vuppuluri 《哲学杂志》2013,93(35):3325-3342
Abstract

Microstructure evolution due to coupled grain boundary migration and grain rotation in low angle grain boundaries is studied through a combination of molecular dynamics and phase field modeling. We have performed two dimensional molecular dynamics simulations on a bicrystal with a circular grain embedded in a larger grain. Both size and orientation of the embedded grain are observed to evolve with time. The shrinking embedded grain is observed to have two regimes: constant dislocation density on the grain boundary followed by constant rate of increase in dislocation density. Based on these observations from the molecular dynamics simulations, a theoretical formulation of the kinetics of coupled grain rotation is developed. The grain rotation rate is derived for the two regimes of constant dislocation density and constant rate of change of dislocation density on the grain boundary during evolution. The theoretical calculation of the grain rotation rate shows strong dependence on the grain size and compares very well with the molecular dynamics simulations. A multi-order parameter based phase field model with coupled grain rotation is developed using the theoretical formulation to model polycrystalline microstructure evolution.  相似文献   

6.
Abstract

The grain boundaries (GBs) present in polycrystalline materials are important with respect to materials behaviour and properties. During the transient stage of oxidation, the higher GB diffusivity results in heterogeneous oxidation structures in the form of oxide ridges that emerge along the alloy GBs. In an attempt to delve into the more fundamental aspects of the GBs, such as GB energy, the size of the oxide ridges was quantitatively measured by atomic force microscopy on the post oxidation surface of a Fe-22 wt % Cr alloy after an oxidation exposure at 800 °C in dry air. The GB diffusivity was calculated utilising the ridge size data and the relationship between the GB diffusivity and the GB characteristics was determined. Furthermore, the GB energy was calculated from the GB diffusivity data, also to make comparison with the data available in the literature. The absolute value of the calculated GB energy was quite close to the values reported in the literature. However, compared to the extremely low temperature (0 K) data-set from the literature, the data-set obtained from this study showed much less spread. The smaller variation range may be attributed to the higher temperature condition (1073 K) in this study.  相似文献   

7.
Grain boundary diffusion and segregation experiments have been carried out in the same metallic solid solutions by means of radio-isotopes and Auger techniques. It was shown that the mass transport parameters could only be understood by assuming the formation of “2D phases” in “segregated grain boundaries” where the main bonds between atoms were identical to those which limit the bulk solid solubility of the solutes.  相似文献   

8.
9.
Martin E. Glicksman 《哲学杂志》2020,100(14):1789-1817
ABSTRACT

Grain boundary grooves (GBGs) are local features that develop along polycrystalline solid–liquid interfaces. Interest in GBGs lies in their ability to form interface defects during crystallization that promote, in fact, dominate, morphological instability and affect microstructure formation in cast alloys. Recently, we reported on unobserved subtle aspects of the thermodynamic behaviour of GBG microstructures by combining sharp-interface field theory with diffuse-interface phase-field simulations. A surprising feature revealed about steady-state GBGs is that despite their stationarity they nonetheless support persistent capillary-mediated energy fluxes with divergences that continuously cool their interfaces and increase local curvatures. We now analyse the energetic behaviour of GBGs as ‘open’ thermodynamic systems, and report further details of their formation free energy that show how geometric constraints and capillary-mediated thermodynamic fields self-interact and influence the steady-state shapes of GBGs.  相似文献   

10.
《Current Applied Physics》2015,15(4):461-467
We have successfully developed a Dy-free grain boundary diffusion process with neodymium hydride (NdHx) alloy to the permanent magnet Nd2Fe14B powders using hydrogenation – disproportionation – desorption – recombination (HDDR) method. All the diffusion treatments were performed at 700–800 °C for various annealing time under the high vacuum with rotating diffusion method that effectively control the abnormal grain growth. The coercivities of Dy-treated Nd2Fe14B powders were varied from 9.5 kOe to 13.2 kOe but the remanence was decreased to 8.1 kG (10% reduction) depending on dysprosium hydride (DyHx) content and diffusion treated time. However, the coercivity and remanence of Dy-free diffusion treated powder have been increased to 12.2 kOe (28.5% enhancement) and 11.1 kG (22% enhancement) at the optimal diffusion treatment (800 °C for 3 h), respectively. This unique simultaneous enhancement is to isolate the magnetic coupling between Nd2Fe14B grains by creating non-magnetic Nd grain boundaries and enhance the alignment of the Nd2Fe14B hard magnetic phase, fabricated by optimal diffusion conditions.  相似文献   

11.
J. Svoboda  L. Klinger  E. Rabkin 《哲学杂志》2013,93(30):3398-3412
The Kirkendall effect is conditioned by active diffusion as well as by active sources and sinks for vacancies. In the case of grain boundaries under the condition of negligible bulk diffusion, the Kirkendall effect is highly localized and responsible for the formation of an extra material wedge in the grain boundary, which may lead to high stress concentrations. The Kirkendall effect in grain boundaries of a binary system is described by a set of partial differential equations for the mole fraction of one of the diffusing components and for the stress component normal to the grain boundary completed with the respective initial and boundary conditions. The contact conditions of the grain boundary with the surface layer acting as source of one of the diffusing components can be considered as equilibrium ones ensuring the continuity of generalized chemical potentials of both diffusing components. Thus, the boundary conditions are determined by the difference in chemistry (i.e. how the thermodynamic parameters depend on chemical composition) of the grain boundaries and of the surface layer. The simulations based on the present model indicate a drastic influence of the chemistry on the grain boundary interdiffusion and Kirkendall effect.  相似文献   

12.
In this paper we establish new results about the existence, stability, and instability of periodic travelling wave solutions related to the critical Korteweg-de Vries equation
ut+5u4ux+uxxx=0,  相似文献   

13.
《Physics letters. A》2020,384(22):126555
Molecular dynamics method is performed for analyzing the relationship of the twin boundary and grain boundary on the cyclic response of nanotwinned Cu. Results show that the strength difference among the grain boundary, the twin boundary and the variation of dislocation density are nearly 2-2.5 times. We predict twin boundary is only a factor that affects the stable response, however, the dislocation form and the time to reach stability is caused by the grain boundary. Furthermore, the phenomenon of cyclic hardening is found in all the nanotwinned Cu samples.  相似文献   

14.
Orientation distribution functions in two recrystallized austenitic stainless steels (AISI types 304 and 316L) with known grain boundary misorientation distributions have been studied. Previously obtained data on grain boundary spectra in these steels have been re-examined and analyzed from the point of view of texture analysis.The results obtained have shown that there is no unambiguous relatonship between grain boundary misorientation distribution and grain orientation distribution (ODF) determined by the X-ray analysis in the materials under study. This ambiguity is due to the following reason. In the grain boundary misorientation statistics only nearest-neighbor grains are taken into account, but in the orientation distribution function orientations are averaged over the entire volume of the specimen independent as to whether the grains are adjacent or not. Two main results were established for the steels under study: (i) Textures of the two steels differ, though their grain boundary misorientation distributions are similar; and (ii) misorientations of the majority of grain boundaries can be described as rotations about the axes close to 110.  相似文献   

15.
We compare four surface motion laws for sharp surfaces with their diffuse interface counterparts by means of gradient flows on corresponding energy functionals. The energy functionals can be defined to give the same dependence on normal direction for the energy of sharp plane surfaces as for their diffuse counterparts. The anisotropy of the kinetics can be incorporated into the inner product without affecting the energy functional.  相似文献   

16.
17.
《Current Applied Physics》2014,14(7):922-927
The electrical properties of 9 mol% MgO–ZrO2 (Mg-PSZ) with 1 mol% Al2O3 and the mechanisms for electrical degradation were investigated using structural, morphological, and electrochemical analyses. The addition of Al2O3 caused an increase in both the monoclinic and the Mg-rich phases at the grain boundaries in the Mg-PSZ. Coarse grains larger than 20 μm and an intergranular layer composed of the Mg-rich phase were identified in a specimen sintered at 1600 °C. This specimen exhibited a minimum of ionic conductivity (4.98 × 10−4 S cm−1 at 700 °C) due to the grain boundary resistance (245 Ω cm2), which dominated the overall resistance. A similar trend was observed over the entire temperature range (600–1500 °C). An intergranular siliceous impurity (SiO2) was present in conjunction with the Mg-rich phase. This impurity and the Mg-rich phase acted as a barrier layer for oxygen ion diffusion. The presence of the intergranular phases (i.e. the monoclinic and Mg-rich phases) contributed to the degradation of the ionic conductivity in Mg-PSZ with an Al2O3 addition.  相似文献   

18.
考虑界面散射的金属纳米线热导率修正   总被引:1,自引:0,他引:1       下载免费PDF全文
李静  冯妍卉  张欣欣  黄丛亮  杨穆 《物理学报》2013,62(18):186501-186501
理论分析了声子和电子输运对Cu, Ag金属纳米线热导率的贡献. 采用镶嵌原子作用势模型描述纳米尺寸下金属原子间的相互作用, 应用平衡分子动力学方法和Green-Kubo函数模拟了金属纳米线的声子热导率; 采用玻尔兹曼输运理论和Wiedemann-Franz定律计算电子热导率; 并通过散射失配模型和Mayadas-Shatzkes模型引入晶界散射的影响. 在此基础上, 考察分析了纳米线尺度和温度的影响. 研究结果表明: Cu, Ag纳米线热导率的变化规律相似; 电子输运对金属纳米线的导热占主导地位, 而声子热导率的贡献也不容忽视; 晶界散射导致热导率减小, 尤其对电子热导率作用显著; 纳米线总热导率随着温度的升高而降低; 随着截面尺寸减小而减小, 但声子热导率所占份额有所增加. 关键词: 纳米线 热导率 表面散射 晶界散射  相似文献   

19.
《中国物理 B》2021,30(9):97402-097402
Grain boundaries(GBs),as extremely anisotropic pinning defects,have a strong impact on vortex motion in type-Ⅱsuperconductors,and further on the macro level dominates the superconductivity for example the critical current density.Many previous studies indicated that mostly GB plays the role of a strong barrier for vortex motion,while an easy-flow channel just under some certain conditions.In order to thoroughly make clear of the questions of what is exactly the role of GB on vortex motion and how it works,in this article we developed a large scale molecular dynamic model and revealed the action of GB on vortex motion in type-Ⅱ superconductors.The most significant finding is that the role of GB on vortex motion can be changeable from a barrier to an easy-flow channel,and which is intrinsically determined by the competition effect correlated with its action on vortex between in the GB and no-GB regions.Such the competition effect essentially depends on the attributes of both the GB(described by the GB strength and angle θ) and no-GB pining regions(by the relative disorder strength α_p/a_v).Specifically,for a YBa_2 Cu_3 O_(7-x)(YBCO) sample,to obtain a clear knowledge of vortex motion in GB region,we visualized the three typical trajectories of vortices during the three vortex movement stages.Further,in order to understand how GB results in the macro current-carrying property,corresponding to the current-voltage relation of the YBCO conductor,we obtained the average velocity v_y of vortices varying with their driving force,which is nearly identical with the previous observations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号