首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For a metric continuum X, let Fn(X)={AX:A is nonempty and has at most n points}. In this paper we show a continuum X such that F2(X) has the fixed point property while X does not have it.  相似文献   

2.
It is well known that Tychonoff spaces are those whose topology is induced by a uniformity. We use this fact to give two characterizations of chainable continua; the first one in terms of V-chains and the other one in terms of V-maps. We also define the surjective semispan for Hausdorff continua and we prove that chainable continua has empty surjective semispan. As a consequence of this result we obtain that each map from a continuum onto a chainable continuum is universal; in particular, chainable continua have the fixed point property.  相似文献   

3.
In this work we expand upon the theory of open ultrafilters in the setting of regular spaces. In [E. van Douwen, Remote points, Dissertationes Math. (Rozprawy Mat.) 188 (1981) 1-45], van Douwen showed that if X is a non-feebly compact Tychonoff space with a countable π-base, then βX has a remote point. We develop a related result for the class of regular spaces which shows that in a non-feebly compact regular space X with a countable π-base, there exists a free open ultrafilter on X that is also a regular filter.Of central importance is a result of Mooney [D.D. Mooney, H-bounded sets, Topology Proc. 18 (1993) 195-207] that characterizes open ultrafilters as open filters that are saturated and disjoint-prime. Smirnov [J.M. Smirnov, Some relations on the theory of dimensions, Mat. Sb. 29 (1951) 157-172] showed that maximal completely regular filters are disjoint prime, from which it was concluded that βX is a perfect extension for a Tychonoff space X. We extend this result, and other results of Skljarenko [E.G. Skljarenko, Some questions in the theory of bicompactifications, Amer. Math. Soc. Transl. Ser. 2 58 (1966) 216-266], by showing that a maximal regular filter on any Hausdorff space is disjoint prime.Open ultrafilters are integral to the study of maximal points and lower topologies in the partial order of Hausdorff topologies on a fixed set. We show that a maximal point in a Hausdorff space cannot have a neighborhood base of feebly compact neighborhoods. One corollary is that no locally countably compact Hausdorff topology is a lower topology, which was shown previously under the additional assumption of countable tightness by Alas and Wilson [O. Alas, R. Wilson, Which topologies can have immediate successors in the lattice of T1-topologies? Appl. Gen. Topol. 5 (2004) 231-242]. Another is that a maximal point in a feebly compact space is not a regular point. This generalizes results of both Carlson [N. Carlson, Lower upper topologies in the Hausdorff partial order on a fixed set, Topology Appl. 154 (2007) 619-624] and Costantini [C. Costantini, On some questions about posets of topologies on a fixed set, Topology Proc. 32 (2008) 187-225].  相似文献   

4.
We prove that if Si is a Souslin arc (a Hausdorff arc that is the compactification of a Souslin line) for each i and , then every hereditarily indecomposable subcontinuum of X is metric. Since every non-degenerate hereditarily indecomposable continuum that is an inverse limit on metric arcs is a pseudo-arc, it follows that such an X would be a pseudo-arc or a point.  相似文献   

5.
We prove that a Hausdorff space X is very I-favorable if and only if X is the almost limit space of a σ-complete inverse system consisting of (not necessarily Hausdorff) second countable spaces and surjective d-open bonding maps. It is also shown that the class of Tychonoff very I-favorable spaces with respect to the co-zero sets coincides with the d-openly generated spaces.  相似文献   

6.
The main results of the paper are as follows: covering characterizations of wQN-spaces, covering characterizations of QN-spaces and a theorem saying that Cp(X) has the Arkhangel'ski?ˇ property (α1) provided that X is a QN-space. The latter statement solves a problem posed by M. Scheepers [M. Scheepers, Cp(X) and Arhangel'ski?ˇ's αi-spaces, Topology Appl. 89 (1998) 265-275] and for Tychonoff spaces was independently proved by M. Sakai [M. Sakai, The sequence selection properties of Cp(X), Preprint, April 25, 2006]. As the most interesting result we consider the equivalence that a normal topological space X is a wQN-space if and only if X has the property S1(Γshr,Γ). Moreover we show that X is a QN-space if and only if Cp(X) has the property (α0), and for perfectly normal spaces, if and only if X has the covering property (β3).  相似文献   

7.
Given two compatible metrics on a metrizable space X. It is well known that they give rise to the same Hausdorff hypertopologies and upper Hausdorff hypertopologies, on the collection of all closed subsets of X, if and only if they are uniformly equivalent. This is no longer true for the lower Hausdorff hypertopology; indeed a weaker condition is needed, and this condition has been found by Costantini and Vitolo.  相似文献   

8.
We show that if a space X is the union of not more than κ-many discrete subspaces, where κ is an infinite cardinal, then the same holds for any perfect image of X. It follows that a compact Hausdorff space with no isolated points can never be covered by fewer than continuum many discrete subspaces; this answers a question of I. Juhász and J. van Mill. We also consider coverings by right-separated and left-separated subspaces.  相似文献   

9.
The 0-stitched disks property is introduced and shown to detect codimension one manifold factors of dimension n?4. It is shown that if a space X is an ANR and has the 0-stitched disks property, then X has the disjoint homotopies property. It follows that if a space X is a resolvable generalized manifold of dimension n?4 with the 0-stitched disks property, then X is a codimension one manifold factor. Whether or not the 0-stitched disks property is equivalent to the disjoint homotopies property remains an open question.  相似文献   

10.
11.
This article is a natural continuation of [A.V. Arhangel'skii, Remainders in compactifications and generalized metrizability properties, Topology Appl. 150 (2005) 79-90]. As in [A.V. Arhangel'skii, Remainders in compactifications and generalized metrizability properties, Topology Appl. 150 (2005) 79-90], we consider the following general question: when does a Tychonoff space X have a Hausdorff compactification with a remainder belonging to a given class of spaces? A famous classical result in this direction is the well known theorem of M. Henriksen and J. Isbell [M. Henriksen, J.R. Isbell, Some properties of compactifications, Duke Math. J. 25 (1958) 83-106].It is shown that if a non-locally compact topological group G has a compactification bG such that the remainder Y=bG?G has a Gδ-diagonal, then both G and Y are separable and metrizable spaces (Theorem 5). Several corollaries are derived from this result, in particular, this one: If a compact Hausdorff space X is first countable at least at one point, and X can be represented as the union of two complementary dense subspaces Y and Z, each of which is homeomorphic to a topological group (not necessarily the same), then X is separable and metrizable (Theorem 12). It is observed that Theorem 5 does not extend to arbitrary paratopological groups. We also establish that if a topological group G has a remainder with a point-countable base, then either G is locally compact, or G is separable and metrizable.  相似文献   

12.
Let X be a continuum. The n-fold hyperspace Cn(X), n<∞, is the space of all nonempty compact subsets of X with the Hausdorff metric. Four types of local connectivity at points of Cn(X) are investigated: connected im kleinen, locally connected, arcwise connected im kleinen and locally arcwise connected. Characterizations, as well as necessary or sufficient conditions, are obtained for Cn(X) to have one or another of the local connectivity properties at a given point. Several results involve the property of Kelley or C*-smoothness. Some new results are obtained for C(X), the space of subcontinua of X. A class of continua X is given for which Cn(X) is connected im kleinen only at subcontinua of X and for which any two such subcontinua must intersect.  相似文献   

13.
In 1957 Robert Ellis proved that a group with a locally compact Hausdorff topology T making all translations continuous also has jointly continuous multiplication and continuous inversion, and is thus a topological group. The theorem does not apply to locally compact asymmetric spaces such as the reals with addition and the topology of upper open rays. We first show a bitopological Ellis theorem, and then introduce a generalization of locally compact Hausdorff, called locally skew compact, and a topological dual, Tk, to obtain the following asymmetric Ellis theorem which applies to the example above:Whenever (X,⋅,T) is a group with a locally skew compact topology making all translations continuous, then multiplication is jointly continuous in both (X,⋅,T) and (X,⋅,Tk), and inversion is a homeomorphism between (X,T) and (X,Tk).This generalizes the classical Ellis theorem, because T=Tk when (X,T) is locally compact Hausdorff.  相似文献   

14.
By a characterization of compact spaces in Section 1, a process of obtaining a compactification (X,k) of an arbitrary topological space X is described in Section 2 by a combined approach of nets and open filters. The Wallman compactification can be embedded in X if X is Hausdorff and by a little modification, the compactification of X is the Stone-?ech compactification of X if X is Tychonoff.  相似文献   

15.
We introduce the notions of a brush space and a weak brush space. Each of these spaces has a compact connected core with attached connected fibers and may be either compact or non-compact. Many spaces, both in the Hausdorff non-metrizable setting and in the metric setting, have realizations as (weak) brush spaces. We show that these spaces have the fixed point property if and only if subspaces with core and finitely many fibers have the fixed point property. This result generalizes the fixed point result for generalized Alexandroff/Urysohn Squares in Hagopian and Marsh (2010) [4]. We also look at some familiar examples, with and without the fixed point property, from Bing (1969) [1], Connell (1959) [3], Knill (1967) [7] and note the brush space structures related to these examples.  相似文献   

16.
A. Lelek asked which continua are remainders of locally connected compactifications of the plane. In this paper we study a similar problem with local connectedness replaced by arcwise connectedness. (Each locally connected continuum is arcwise connected.) We give the following characterization: a continuum X is pointed 1-movable if and only if there is an arcwise connected compactification of the plane with X as the remainder.  相似文献   

17.
Let X be a Banach space. We say that X satisfies the fixed point property (weak fixed point property) if every non-expansive mapping defined from a convex closed bounded (convex weakly compact) subset of X into itself has a fixed point. We say that X satisfies the stable fixed point property (stable weak fixed point property) if the same is true for every equivalent norm which is close enough to the original one. Denote by P(X) the set formed by all equivalent norms with the topology of the uniform convergence on the unit ball of X. We prove that the subset of P(X) formed by the norms failing the fixed point property is dense in P(X) when X is a non-distortable space which fails the fixed point property. In particular, no renorming of ?1 can satisfy the stable fixed point property. Furthermore, we show some examples of distortable spaces failing the weak fixed point property, which can be renormed to satisfy the stable weak fixed point property. As a consequence we prove that every separable Banach space can be renormed to satisfy the stable weak fixed point property.  相似文献   

18.
We generalize and refine results from the author's paper [18]. For a completely regular Hausdorff space X, υX denotes the Hewitt realcompactification of X. It is proved that if υ(X×Y)=υX×υY for any metacompact subparacompact (or m-paracompact) space Y, then X is locally compact. A P(n)-space is a space in which every intersection of less than n open sets is open. A characterization of those spaces X such that υ (X×Y = υX×υY for any (metacompact) P(n)-space Y is also obtained.  相似文献   

19.
We show (in ZFC) that if X is a compact homogeneous Hausdorff space then |X|?2t(X), where t(X) denotes the tightness of X. It follows that under GCH the character and the tightness of such a space coincide.  相似文献   

20.
Let f be a continuous map from a compact metric space X to itself. The map f is called to be P-chaotic if it has the pseudo-orbit-tracing property and the closure of the set of all periodic points for f is equal to X. We show that every P-chaotic map from a continuum to itself is chaotic in the sense of Devaney and exhibits distributional chaos of type 1 with positive topological entropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号