首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We review recent results concerning entropy balance in low-dimensional dynamical systems modeling mass (or charge) transport. The key ingredient for understanding entropy balance is the coarse graining of the local phase-space density. It mimics the fact that ever refining phase-space structures caused by chaotic dynamics can only be detected up to a finite resolution. In addition, we derive a new relation for the rate of irreversible entropy production in steady states of dynamical systems: It is proportional to the average growth rate of the local phase-space density. Previous results for the entropy production in steady states of thermostated systems without density gradients and of Hamiltonian systems with density gradients are recovered. As an extension we derive the entropy balance of dissipative systems with density gradients valid at any instant of time, not only in stationary states. We also find a condition for consistency with thermodynamics. A generalized multi-Baker map is used as an illustrative example. (c) 1998 American Institute of Physics.  相似文献   

2.
Xu Wei  Cai Li 《Physica A》2007,384(2):273-277
This paper shows the Fokker-Planck equation of a dynamical system driven by quasimonochromatic noise. Based on the Fokker-Planck equation and the definition of Shannon's information entropy, the exact time dependence of entropy flux and entropy production for the system is calculated. The relationship between the properties of quasimonochromatic noise and dissipative parameter and their effects on entropy flux and entropy production are discussed.  相似文献   

3.
On the basis of a complete system of fluctuation-dissipation relations, considered in the first part of this series, a variational principle for nonlinear irreversible processes is derived. According to this principle the virtual entropy production functional (analogous to the action in mechanics) has an absolute minimum meaning on the real trajectory of a system. The universal structure of the “kinetic potential” and the “lagrangian” of a system, each contain complete information about fluctuations of macrovariables. The connection of the lagrangian with the markovian kinetic operator of macrovariables is stated. Fundamental properties of dissipative potentials, reflecting microscopic reversibility, are considered. The derived variational principle can be applied to closed systems (the steady state of which is equilibrium) as well as to open ones (when external dynamic forces cause entropy flux through the system and put it into a steady non-equilibrium state). Canonical transformations of macrovariables are considered.  相似文献   

4.
经昊达  张向军  田煜  孟永钢 《物理学报》2015,64(16):168101-168101
摩擦与润滑过程是典型的能量耗散过程, 在机理上与非平衡热力学中的熵增、耗散结构等理论颇有相似之处. 通过热力学分析可以对一些典型的摩擦磨损过程做出合理的机理揭示与推测. 本文利用热力学理论对典型的润滑过程进行了建模分析. 采用分离压模型表征和计入了微尺度下的固液界面作用, 揭示分析了润滑热力学模型与润滑状态Stribeck曲线的联系. 从分析计算结果来看, 润滑Stribeck曲线的摩擦系数最低点与系统热力学上的熵增率最低点具有相当好的对应关系, 而润滑状态从弹流润滑向薄膜润滑的转变过程, 可以用耗散结构理论加以机理解释. 文中的热力学模型和方法能够有效地体现出润滑过程中多物理要素跨尺度非线性耦合的作用, 对实际工程与实验有着重要的指导作用.  相似文献   

5.
In 1954, I. Prigogine and the present author established that the time derivative of the entropy production, for constant values of the fluxes, is always negative or zero when the boundary conditions of the system are stationary. However, mechanical equlibrium was postulated and it follows that the dissipative forces were not taken into consideration but only the other cases of irreversibility (chemical reactions, heat and diffusion). In this work the above limitation is eliminated. The system, however, is assumed to be in mechanical steady flow during the whole process.  相似文献   

6.
We explain the (non-)validity of close-to-equilibrium entropy production principles in the context of linear electrical circuits. Both the minimum and the maximum entropy production principles are understood within dynamical fluctuation theory. The starting point are Langevin equations obtained by combining Kirchoff’s laws with a Johnson-Nyquist noise at each dissipative element in the circuit. The main observation is that the fluctuation functional for time averages, that can be read off from the path-space action, is in first order around equilibrium given by an entropy production rate. That allows to understand beyond the schemes of irreversible thermodynamics (1) the validity of the least dissipation, the minimum entropy production, and the maximum entropy production principles close to equilibrium; (2) the role of the observables’ parity under time-reversal and, in particular, the origin of Landauer’s counterexample (1975) from the fact that the fluctuating observable there is odd under time-reversal; (3) the critical remark of Jaynes (1980) concerning the apparent inappropriateness of entropy production principles in temperature-inhomogeneous circuits.  相似文献   

7.
Self-organization in nonequilibrium systems has been known for over 50 years. Under nonequilibrium conditions, the state of a system can become unstable and a transition to an organized structure can occur. Such structures include oscillating chemical reactions and spatiotemporal patterns in chemical and other systems. Because entropy and free-energy dissipating irreversible processes generate and maintain these structures, these have been called dissipative structures. Our recent research revealed that some of these structures exhibit organism-like behavior, reinforcing the earlier expectation that the study of dissipative structures will provide insights into the nature of organisms and their origin. In this article, we summarize our study of organism-like behavior in electrically and chemically driven systems. The highly complex behavior of these systems shows the time evolution to states of higher entropy production. Using these systems as an example, we present some concepts that give us an understanding of biological organisms and their evolution.  相似文献   

8.
According to thermodynamics the irreversible entropy production of diffusive relaxation processes diverges at the boundary to the vacuum, i.e., to a state of vanishing particle density. By means of a multibaker map we point out that this divergence is not present in the spatially discrete dynamics, which brings forth the evolution equations of irreversible thermodynamics in the continuum limit. In addition, we show that the irreversible entropy production of relaxation towards a nonempty steady state is proportional to the decay rate of the thermodynamic system subjected to absorbing boundary conditions. This generalizes results of the escape rate formalism.  相似文献   

9.
10.
It is known that the ionic conductivity can be obtained by using the diffusion constant and the Einstein relation. We derive it here by extracting it from the steady electric current which we calculate in three ways, using statistics analysis, an entropy method, and an entropy production approach.  相似文献   

11.
Open systems are very important in science and engineering for their applications and the analysis of the real word. At their steady state, two apparently opposed principles for their rate of entropy production have been proposed: the minimum entropy production rate and the maximum entropy production, useful in the analysis of dissipation and irreversibility of different processes in physics, chemistry, biology and engineering. Both principles involve an extremum of the rate of the entropy production at the steady state under non-equilibrium conditions. On the other hand, in engineering thermodynamics, dissipation and irreversibility are analyzed using the entropy generation, for which there exist two principle of extrema too, the minimum and the maximum principle. Finally, oppositions to the extrema principle have been developed too. In this paper, all these extrema principles will be analyzed in order to point out the relations among them and a synthesis useful in engineering applications, in physical and chemical process analysis and in biology and biotechnology will be proposed.  相似文献   

12.
The dissipative steady state far from equilibrium and subject to a slow modulation of external parameters is analyzed. It is shown that the time-integrated energy dissipation consists of three terms. The first of these is irreversible and consists of the time-integrated dissipation of the sequence of exact steady states defined by the externally controlled parameters traversed during the modulation. The second term is reversible and reflects the fact that the dissipation of the time-dependent modulated system, as calculated in a macroscopic way from ensemble averages, is not the same as the dissipation of a sequence of exact steady states. The third term is also reversible and relates to the ensemble dispersion in changes in stored energy during the modulation. If the system has a single degree of freedom and narrow fluctuations, then these fluctuations can be characterized by an effective temperature TN. The third term can then be shown to be equal toT N dS, whereS is the entropy calculated from the distribution function by the usual definition.  相似文献   

13.
针对一个双稳的介观化学反应体系计算了在非平衡相变时最可几路径的熵产生. 利用概率产生函数和程函近似,将化学主方程转化为经典的哈密顿-雅可比方程并通过相空间的零能轨线找到双稳态之间转变的最可几路径. 通过计算前向和逆向最可几路径的熵产生,发现在共存点系统熵变和介质熵变都为零,而在非共存点系统熵变和介质熵变皆不为零.  相似文献   

14.
A stochastic dissipative dynamical system driven by non-Gaussian noise is investigated. A general approximate Fokker-Planck equation of the system is derived through a path-integral approach. Based on the definition of Shannon's information entropy, the exact time dependence of entropy flux and entropy production of the system is calculated both in the absence and in the presence of non-equilibrium constraint. The present calculation can be used to interpret the interplay of the dissipative constant and non-Gaussian noise on the entropy flux and entropy production.  相似文献   

15.
It is shown how both the principles of extremum of entropy production, which are often used in the study of complex systems, follow from the maximization of overall system conductivities, under appropriate constraints. In this way, the maximum rate of entropy production (MEP) occurs when all the forces in the system are kept constant. On the other hand, the minimum rate of entropy production (mEP) occurs when all the currents that cross the system are kept constant. A brief discussion on the validity of the application of the mEP and MEP principles in several cases, and in particular to the Earth’s climate is also presented.  相似文献   

16.
Dissipative accounts of structure formation show that the self-organisation of complex structures is thermodynamically favoured, whenever these structures dissipate free energy that could not be accessed otherwise. These structures therefore open transition channels for the state of the universe to move from a frustrated, metastable state to another metastable state of higher entropy. However, these accounts apply as well to relatively simple, dissipative systems, such as convection cells, hurricanes, candle flames, lightning strikes, or mechanical cracks, as they do to complex biological systems. Conversely, interesting computational properties—that characterize complex biological systems, such as efficient, predictive representations of environmental dynamics—can be linked to the thermodynamic efficiency of underlying physical processes. However, the potential mechanisms that underwrite the selection of dissipative structures with thermodynamically efficient subprocesses is not completely understood. We address these mechanisms by explaining how bifurcation-based, work-harvesting processes—required to sustain complex dissipative structures—might be driven towards thermodynamic efficiency. We first demonstrate a simple mechanism that leads to self-selection of efficient dissipative structures in a stochastic chemical reaction network, when the dissipated driving chemical potential difference is decreased. We then discuss how such a drive can emerge naturally in a hierarchy of self-similar dissipative structures, each feeding on the dissipative structures of a previous level, when moving away from the initial, driving disequilibrium.  相似文献   

17.
B.L. Hu 《Physics letters. A》1983,97(9):368-374
We discuss the meaning of gravitational entropy of the universe when quantum dissipative processes like cosmological particle production are important and propose to use the entropy generated in these processes as a measure of the change in gravitational entropy of the spacetime dynamics. Penrose's Weyl Curvature Hypothesis is re-examined in this generalized context. It is shown that gravitational entropy defined as such can actually decrease in the quantum regime by the action of vacuum viscosity. The theoretical and cosmological implications of this postulate is discussed.  相似文献   

18.
胡隐樵 《物理学报》2003,52(6):1379-1384
一个系统的发展总是由不可逆热力过程和非线性动力过程所驱动.将大气动力学方程组同考虑了动能变化的Gibbs关系结合起来构建的熵平衡方程,才能更好地描述大气系统的不可逆热力过程和非线性动力过程.至今非平衡态热力学仅利用Onsager线性唯象关系证明了最小熵产生原理.利用新建立的熵平衡方程和大气动力学方程的性质证明,最小熵产生原理在热力学线性区和非线性区都是普遍成立的.且当热量输送平衡、水汽输送平衡和动量输送平衡时,系统达到不可逆过程最弱的最小熵产生热力学状态.当系统又是动力平衡且无平流时,这种最小熵产生态就是 关键词: 非线性热力学 熵产生 最小熵产生原理 有序结构  相似文献   

19.
It is well established that non-equilibrium states may be a source of order in the sense that they result in irreversible processes leading to a new type of dynamic state of matter with structures called dissipative structures. The aim of calculations of the accumulated negentropy production, net entropy production and synergetic efficiency, presented in this article, is to show that by inspecting the value of the synergetic efficiency, defined by the author in a new way, one can predict the existence or lack thereof a tendency to form a dissipative structure in a physical open system. The results presented in this article were obtained for the temperature 996 K. A new theoretical approach proposed may be used to enhance the effectiveness of technological processes applied to obtain materials of new generation.  相似文献   

20.
Extended thermodynamics of irreversible processes is developed; based on two postulates by which additional variables of the entropy density are dissipative fluxes and material time derivatives of the ordinary thermodynamic variables. Within these theories a more general approximation of entropy production is obtained. As a consequence of the proposed formalism, the constitutive dual-phase-lag equations, as well as equations of the conventional version of extended irreversible thermodynamics are obtained. The behavior of the entropy during oscillatory approach to equilibrium is considered. The proposed theory leads to a strictly monotonic dependency of the entropy on time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号