首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
全自动凯氏定氮仪测定干旱区土壤中全氮含量   总被引:3,自引:0,他引:3  
对采用全自动凯氏定氮仪测定干旱区土壤全氮量的方法以及实验中影响因素进行了研究,对消解时间和硫酸用量进行了选择性实验,结果表明,土壤中有机物在30min时消解完全,硫酸用量在10~15mL时为最佳,干旱区土壤中氮一般含量为(0.260±0.003)%(P=0.95)。方法的相对标准偏差(RSD)≤1%,用来测定硫酸铵标准物质,其检测结果与标准值基本吻合,检测的准确度和精密度都符合国家标准的要求。  相似文献   

2.
本实验采用了UDK159全自动凯氏定氮仪对干旱区土壤全氮量的方法以及试验部分影响因素进行研究,结果表明:精密度试验中RSD在0.01919%~0.1073%之间(≤1%),用标准物质硫酸铵进行回收率检验,其回收率达99.5% 以上,检测准确度和精密度都符合国家标准的要求;在消化时间的选择上,变异系数为0.0088,表明土壤中有机物在30 min时已完全消化;而关于硫酸用量在10~15mL时为最佳值,干旱区土壤中氮一般含量为(0.260±0.003) %(P =0.95)。  相似文献   

3.
工业用已内酰胺挥发碱的测定采用的是GB/T13255.4-1991规定的方法。该方法原理是在碱性介质中,蒸馏出挥发碱,用过量的盐酸标准溶液吸收,以甲基红-次甲基蓝乙醇溶液为指示剂,用氢氧化钠标准溶液反滴定,根据空白消耗的氢氧化钠标准溶液与试样消耗的氢氧化钠标准溶液之差来计算挥发碱的含量。但该方法准备工作非常繁琐,用于蒸馏的玻璃仪器接口多极易漏气,造成结果降低。  相似文献   

4.
全自动凯氏定氮仪测定金枪鱼肉中挥发性盐基氮含量   总被引:5,自引:0,他引:5  
挥发性盐基氮与动物性食品的腐败程度之间有着明确的对应关系,是评定动物性食品新鲜度的重要指标之一.随着人们对食品安全卫生问题的日渐重视,挥发性盐基氮的检测量也越来越大.  相似文献   

5.
保存、分析方法等因素对土壤中硝态氮测定的影响   总被引:6,自引:0,他引:6  
为探明土壤中硝态氮测定的影响因素,采用黑土、潮土、红壤为材料,研究样品的保存方法、浸提剂种类、分析方法、实验用水及试剂纯度对土壤中硝态氮测定的影响。结果表明,测定土壤硝态氮时,土样在冷冻条件下保存优于冷藏条件。冷冻条件下保存可在45 d内完成测试,而冷藏保存则需在7 d内完成测试。采用0.01 mol/L CaCl2和2 mol/L KCl为浸提剂时,对土壤中硝态氮的测定结果无显著差异。紫外比色法的测定结果与林业标准法(LY/T1230-1999)相比无显著差异,但显著高于流动注射法,且紫外比色法与流动注射法之间有显著相关性。流动注射法的测定结果与林业标准法相比也无显著差异。实验用水的杂质可使土壤中硝态氮的测定结果显著偏高,对其进行加热煮沸、蒸馏及无氨化蒸馏后可显著降低水中杂质的含量。  相似文献   

6.
土壤硝态氮反映土壤短期氮素供应水平,实时了解土壤硝态氮的含量为精准农业和农业面源污染防控提供支撑,因此,在线实时检测土壤硝态氮方法突破就显得十分迫切。土壤硝态氮中的硝酸根离子在土壤中的高水溶性和流动性为全固态硝酸根离子选择电极高敏感检测土壤中硝态氮提供了条件,固态硝态氮离子选择电极的离子选择膜反应硝酸根离子在被测溶液中的浓度。采用全固态硝酸根离子选择电极,且与温度电极和pH电极融合组成电极阵列对土壤饱和溶液中的硝态根离子进行检测。设计了高输入阻抗运算放大电路对电极信号进行采集,并通过微处理控制蠕动泵完成土壤硝态氮待测溶液连续流动测量及实时传输结果。实验结果表明,电极响应时间≤15 s,斜率-51.63 mV/decade,线性范围10-5-10-2.2 mol/L,最低检测限10-5.23 mol/L。相对标准差在0.78%-4.47%范围内,加标回收率均在90%-110%以内。与国家标准紫外可见分光光度法测试结果相比,相关系数(R2)为0.9952,为土壤硝态氮在现场检测奠定技术基础。  相似文献   

7.
快速准确测定土壤中铵态氮、硝态氮含量对监测土壤肥力水平和生态环境,指导作物氮肥施用非常重要。选择30份土样,利用全波长扫描式多功能读数仪(酶标仪)结合靛酚蓝分光光度法、硫酸肼还原法测定土壤中铵态氮和硝态氮含量,探讨利用酶标仪测定土壤无机氮含量的可行性。结果显示,利用酶标仪测定土壤铵态氮、硝态氮含量与连续流动分析仪测定结果之间无明显差异,彼此间呈显著线性相关。铵态氮回归直线方程为Y(连续流动分析仪-NH_4~+-N)=0.997 6 X(酶标仪-NH_4~+-N)-0.012 3,相关系数R=0.961 9(n=30,P<0.01);硝态氮回归方程为Y(连续流动分析仪-NO_3~--N)=0.959 3 X(酶标仪-NO_3~--N)+0.021 9,相关系数R=0.964 0(n=30,P<0.01)。酶标仪测定铵态氮回收率在96.2%~108%,相对标准偏差在10%以内;硝态氮测定回收率为94.9%~110%,且相对标准偏差在5%以内,酶标仪测定土壤铵态氮和硝态氮方法检出限分别为0.068mg/L和0.028mg/L。酶标仪测定土壤无机氮速度快,精密度、准确度较高,消耗试剂少,可用于大批量土壤浸提液中铵态氮和硝态氮含量的快速分析。  相似文献   

8.
探讨了利用连续流动分析仪测定水溶肥料中的硝态氮的方法.选择含腐植酸、有机、微量元素、大量元素等4类水溶肥料样品,采用水振荡浸提试样,利用连续流动分析仪对浸提液中硝态氮的含量进行测定,并与紫外分光光度计测定数据进行对比,探讨利用连续流动分析仪测定化学肥料中硝态氮含量可行性.结果表明,流动分析仪法的方法检出限为0.008 ...  相似文献   

9.
快速准确测定土壤中铵态氮、硝态氮含量对监测土壤肥力水平和生态环境,指导作物氮肥施用非常重要。选择30份土样,利用全波长扫描式多功能读数仪(酶标仪)结合靛酚蓝分光光度法、硫酸肼还原法测定土壤中铵态氮和硝态氮含量,探讨利用酶标仪测定土壤无机氮含量的可行性。结果显示,利用酶标仪测定土壤铵态氮、硝态氮含量与连续流动分析仪测定结果之间无明显差异,彼此间呈显著线性相关。铵态氮回归直线方程为Y(连续流动分析仪-NH_4~+-N)=0.997 6 X(酶标仪-NH_4~+-N)-0.012 3,相关系数R=0.961 9(n=30,P0.01);硝态氮回归方程为Y(连续流动分析仪-NO_3~--N)=0.959 3 X(酶标仪-NO_3~--N)+0.021 9,相关系数R=0.964 0(n=30,P0.01)。酶标仪测定铵态氮回收率在96.2%~108%,相对标准偏差在10%以内;硝态氮测定回收率为94.9%~110%,且相对标准偏差在5%以内,酶标仪测定土壤铵态氮和硝态氮方法检出限分别为0.068mg/L和0.028mg/L。酶标仪测定土壤无机氮速度快,精密度、准确度较高,消耗试剂少,可用于大批量土壤浸提液中铵态氮和硝态氮含量的快速分析。  相似文献   

10.
土壤硝态氮反映土壤短期氮素供应水平,实时了解土壤硝态氮的含量为精准农业和农业面源污染防控提供支撑,因此,在线实时检测土壤硝态氮方法突破就显得十分迫切。土壤硝态氮中的硝酸根离子在土壤中的高水溶性和流动性为全固态硝酸根离子选择电极高敏感检测土壤中硝态氮提供了条件,固态硝态氮离子选择电极的离子选择膜反应硝酸根离子在被测溶液中的浓度。采用全固态硝酸根离子选择电极ELIT NO3-,且与温度电极和pH电极融合组成电极阵列对土壤饱和溶液中的硝酸根离子进行检测。设计了高输入阻抗运算放大电路对电极信号进行采集,并通过微处理控制蠕动泵完成土壤硝态氮待测溶液连续流动测定及实时传输结果。实验结果表明,电极响应时间≤15 s,斜率-51.63 mV/decade,线性范围10-5~10-2.2 mol/L,最低检测限10-5.23 mol/L。相对标准差在0.78%~4.5%,加标回收率均在90.0%~110%。与紫外可见分光光度法测试结果相比,相关系数(R2)为0.9952,为土壤硝态氮在现场检测奠定技术基础。  相似文献   

11.
土壤硝态氮反映土壤短期氮素供应水平,实时了解土壤硝态氮的含量为精准农业和农业面源污染防控提供支撑,因此,在线实时检测土壤硝态氮方法突破就显得十分迫切。土壤硝态氮中的硝酸根离子在土壤中的高水溶性和流动性为全固态硝酸根离子选择电极高敏感检测土壤中硝态氮提供了条件,固态硝态氮离子选择电极的离子选择膜反应硝酸根离子在被测溶液中的浓度。采用全固态硝酸根离子选择电极ELIT NO~-_3,且与温度电极和pH电极融合组成电极阵列对土壤饱和溶液中的硝酸根离子进行检测。设计了高输入阻抗运算放大电路对电极信号进行采集,并通过微处理控制蠕动泵完成土壤硝态氮待测溶液连续流动测定及实时传输结果。实验结果表明,电极响应时间≤15 s,斜率-51.63 mV/decade,线性范围10~(-5)~10~(-2.2) mol/L,最低检测限10~(-5.23) mol/L。相对标准差在0.78%~4.5%,加标回收率均在90.0%~110%。与紫外可见分光光度法测试结果相比,相关系数(R~2)为0.995 2,为土壤硝态氮在现场检测奠定技术基础。  相似文献   

12.
探讨了利用连续流动分析仪测定水溶肥料中的硝态氮的方法。选择含腐植酸、有机、微量元素、大量元素等4类水溶肥料样品,采用水振荡浸提试样,利用连续流动分析仪对浸提液中硝态氮的含量进行测定,并与紫外分光光度计测定数据进行对比,探讨利用连续流动分析仪测定化学肥料中硝态氮含量可行性。结果表明,流动分析仪法的方法检出限为0.008 g/kg;加标回收率在93.2%~101%;测定结果的相对标准偏差在1.7%~8.3%;所得数据与紫外分光光度计测定结果对比分析,t检验结果表明两种方法无显著差异;两种方法测定数据之间拟合方程为y=0.9782x+0.0768,R2=0.9966。结果表明,连续流动分析仪测试速度快,试剂消耗量少,精密度和准确度满足要求,可用于水溶肥料硝态氮含量的分析测定。  相似文献   

13.
选择石麦15、衡观35两个品种小麦为供试作物,进行营养液培养,研究不同浓度硝态氮供应下Ca2+通道阻断剂LaCl3对小麦苗期根系形态特征的影响。结果表明:添加Ca2+通道阻断剂LaCl3后,3种浓度硝态氮处理的小麦根系初生根长度、侧根长度、根系总长度、侧根平均长度均较不添加LaCl3处理显著变短;直径(>0.45 mm)范围内根系所占比例增加。不施用硝态氮条件下,与不添加LaCl3处理相比,LaCl3处理对小麦植株地上部NO3-含量变化不大,但一级侧根数量明显减少,2.5和50.0 mmol.L-1硝态氮施用时,LaCl3处理侧根分布密度增加,衡观35较石麦15更明显。结论初步认为:Ca2+通道阻断剂LaCl3施用,影响小麦根系生长发育:根系伸长受抑,根系变粗,若施用硝态氮,侧根数量分布增加。  相似文献   

14.
什么形态的氮容易被作物吸收   总被引:3,自引:0,他引:3  
孙成斌 《化学教育》2002,23(5):3-4,44
通过对氮元素在土壤中及在作物体内存在的形态与相互转换的分析,说明作物易于吸收在水中溶解度较大的铵态氮和硝态氮。这2种形态的氮素对作物营养来说都是同等重要的。  相似文献   

15.
环境水体中亚硝态氮、硝态氮和总氮的液相色谱测定   总被引:2,自引:0,他引:2  
建立了环境水体中NO2-、NO3-及总氮含量的液相色谱测定方法.采用Hypersil ODS(5μm,250mm×4.6mm i.d.)色谱柱;流动相:17.5mmoL/L KH2PO4-2mmol/L H3PO4缓冲液(pH3.5)-乙腈(体积比92.5:7.5);流速:0.8mL/min;柱温:30℃;紫外检测器:波长204nm.结果表明:水体中NO2-和NO3-的线性范围(以N计):1~80ng,r=0.999 9;方法检出限:NO2-0.4ng、NO3-0.09ng;回收率为NO2-99.2%~102.4%、NO3-98.7%~99.3%,RSD为0.79%和0.25%.  相似文献   

16.
电极法-标准系列加入回收法测定污水中氨态氮   总被引:1,自引:0,他引:1  
研究了在污水样中加入一系列铵标准溶液进行离子选择电极测定氨态氮的新方法,采用奈恩斯特新关系式进行回归运算。使样品和标准完全处于同一条件下测定,从而消除了污水中大量基体对测定影响,提高了方法的准确性。  相似文献   

17.
土壤氮素在土壤养分供给和植物生长发育中起着重要作用。利用氮稳定同位素自然丰度或富集标记技术,开展土壤氮循环转化、化肥利用效率和生物有效性等方面的研究,涉及NH4+-N稳定同位素比值的精准测定。本研究在前人基础上,开发了一种快速高通量的铵态氮蒸馏分离方法,并使用次氯酸盐替代了次溴酸盐优化了铵态氮化学转化条件,将转化效率由原方法的25%左右,提高至60%以上。利用新建立的前处理方法结合气体预浓缩装置与稳定同位素质谱仪(PreCon-IRMS)联用系统,分析了不同浓度条件下自然丰度、15N富集和标记的NH4+-N标准溶液中的氮稳定同位素比值。结果表明,新的反应体系下,当铵态氮浓度为0.5 μmol /mL以上时,所有NH4+-N标准样品均能获得较理想的分析精度,其中自然丰度和15N富集参比溶液的NH4+-N的δ15N的精度可控制在0.5‰以内,而15N标记的标准溶液的15N atom%测试精度为0.001~0.006 atom%(CV在0.1~0.3%之间)。所有NH4+-N标准样品的15N测定值与参考值一致,无分馏现象发生。将该方法应用于两种不同土地类型的旱地和稻田土壤浸提液中NH4+-N稳定同位素丰度的测定,也可获得较好的重现性(CV<0.5%),与原方法测定结果基本一致,且精度更优。优化后的前处理方法操作简单,耗时短,重复性好,适用于土壤溶液铵态氮15N丰度测定的快速、批量前处理。  相似文献   

18.
采用中红外衰减全反射光谱对溶液和土壤样本中硝态氮含量(14NO3-N/15NO3-N)进行快速测定。结果表明,溶液和土壤样本中硝酸盐的特征吸收区在1200~1500 cm!1,进一步发现,与常规14NO!3相比,15NO!3的吸收峰红移约35 cm!1。在硝酸盐特征吸收区内,干扰吸收少,吸收峰与硝态氮浓度成正比,采用该特征波段的第一主成分与硝态氮含量进行线性回归分析,相关系数R2>0.9840,表明中红外衰减全反射光谱可用于溶液和土壤中硝态氮的快速检测。同时,依据15NO!3吸收峰的红移特征,采用偏最小二乘法对溶液和土壤样本不同氮同位素标记的硝态氮进行建模预测,结果表明,溶液和土壤样本的预测模型均达优秀水平;溶液样本中,14NO3-N和15NO3-N相关系数(R2)均为0.998,有RPD值分别为6.44和4.76;而土壤样本中,14NO3-N和15NO3-N相关系数(R2)分别为0.979和0.968,RPD值分别为5.75和4.78。因此,红外衰减全反射光谱可用于溶液和土壤中硝态氮以及氮同位素标记硝态氮的测定,为快速原位研究土壤中氮的硝化过程提供新的手段。  相似文献   

19.
蒸馏法测定化肥中氮含量的测量不确定度评定   总被引:1,自引:0,他引:1  
对蒸馏法测定化肥中氮含量的测量不确定度进行了评定。分析了蒸馏法测定化肥中氮含量的不确定度的主要来源,通过数学模型对各不确定度分量进行了评定,采用蒸馏法测定化肥中氮含量的扩展不确定度为0.07%。  相似文献   

20.
塑料密封盒-滴定法测定土壤中碱解氮   总被引:1,自引:0,他引:1  
土壤碱解氮是评定土壤氮素肥力供给能力的一项指标。使用塑料密封盒-石英容器作为碱解氮扩散吸收器皿,代替了传统的玻璃扩散皿。考察了7种不同地区的土壤标准样品连续100d测定数据的稳定性,结果显示标准偏差在0.707~2.825mg/kg,精密度在0.36%~0.67%。对河北等地30组样品对比测定后,发现采用塑料密封盒方法测定的结果与传统方法的测定结果一致。该容器实现了内外室分离,简化了操作步骤,测定结果准确可靠,精密度高,尤其适用于大批量样品的分析测定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号