首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Many mechanisms of colloid retention in porous media under unfavorable conditions have been identified from experiments or theory, such as attachment at surface heterogeneities, wedging at grain to grain contacts, retention via secondary energy minimum association in zones of low flow drag, and straining in pore throats too small to pass. However, no previously published model is capable of representing all of these mechanisms of colloid retention. In this work, we demonstrate that incorporation of surface heterogeneity into our hemispheres-in-cell model yields all experimentally observed non-straining retention mechanisms in porous media under unfavorable conditions. We also demonstrate that the predominance of any given retention mechanism depends on the coupled colloid-collector-flow interactions that are governed by parameters such as the size and spatial frequency of heterogeneous attractive domains, colloid size, and solution ionic strength. The force/torque balance-simulated retention is shown to decrease gradually with decreasing solution ionic strength, in agreement with experimental observations. This gradual decrease stands in sharp contrast to predictions from mean field theory that does not account for discrete surface heterogeneity.  相似文献   

2.
3.
The mechanisms that govern the transport of colloids in the unsaturated zone of soils are still poorly understood, because of the complexity of processes that occur at pore scale. These mechanisms are of specific interest in quantifying water quality with respect to pathogen transport (e.g. Escherichia coli, Cryptosporidium) between the source (e.g. farms) and human users. Besides straining in pore throats and constrictions of smaller or equivalent size, the colloids can be retained at the interfaces between air, water, and grains. Theories competing to explain this mechanism claim that retention can be caused by adhesion at the air-water-interface (AWI) between sediment grains or by straining at the air-water-solid (AWS) contact line. Currently, there are no established methods for the estimation of pathogen retention in unsaturated media because of the intricate influence of AWI and AWS on transport and retention. What is known is that the geometric configuration and connectivity of the aqueous phase is an important factor in unsaturated transport. In this work we develop a computational method based on level set functions to identify and quantify the AWS contact line (in general the non-wetting-wetting-solid contact line) in any porous material. This is the first comprehensive report on contact line measurement for fluid configurations from both level-set method based fluid displacement simulation and imaged experiments. The method is applicable to any type of porous system, as long as the detailed pore scale geometry is available. We calculated the contact line length in model sediments (packs of spheres) as well as in real porous media, whose geometry is taken from high-resolution images of glass bead packs and sedimentary rocks. We observed a strong dependence of contact line length on the geometry of the sediment grains and the arrangement of the air and water phases. These measurements can help determine the relative contribution of the AWS line to pathogen retention.  相似文献   

4.
5.
Ultrafiltration experiments were conducted to study the fouling potential of colloidal suspensions under different ionic strengths and colloid concentrations. A linear relationship was found relating the colloidal fouling potential to the logarithm of the Debye-Huckel parameter, a characteristic for electrical double layers of colloids. This finding provided a useful quantitative linkage between the colloidal fouling potential and the water chemistry. Considering the linear dependence of colloidal fouling potential on the colloid concentration, a bilinear model was proposed to explain the coupling effects of colloid concentration and ionic strength of the suspension on the fouling potential. The model predictions of fouling potential were found to fit accurately with experimentally determined fouling potential values. Further analysis of the model showed that ionic strength can significantly affect colloidal fouling, for example, a 10-fold increase in ionic strength from 0.001 to 0.01 M for a given feed concentration has the same membrane fouling effect as doubling the feed concentration. The model allows for a quick and reliable assessment of fouling potential without even performing any experiments. This could then be used to design the membrane process or pretreatment stages required to mitigate membrane fouling.  相似文献   

6.
We have directly observed the structural evolution of colloidal crystals as a function of increasing ionic strength using confocal scanning laser microscopy. Silica colloids were sedimented onto a glass substrate in deionized water to create large, single domain crystals. The solution ionic strength was then increased by one of three methods of controlled electrolyte addition: (1) direct injection of electrolyte solutions, (2) single step diffusion of electrolyte solutions through a dialysis membrane, and (3) multiple step diffusion of electrolyte solutions of increasing ionic strength through a dialysis membrane. During direct injection of electrolyte solutions, initially large, single domain colloidal crystals were shear melted and then evolved into polycrystalline structures at low ionic strengths and gels at higher ionic strengths. Diffusion of electrolyte solutions though dialysis membranes in a single step produced gradient-driven transport that also melted initial single domain crystals to yield polycrystalline and gel structures similar to the injection approach. Interestingly, the multistep diffusion of several electrolyte solutions through dialysis membranes facilitated retention of large, single domain crystals even as particles came into adhesive contact. This was achieved by reducing the contraction rate of the crystalline lattice to allow sufficient time for diffusion-limited configurational rearrangements to occur within the evolving structure. These mechanically robust, single domain colloidal crystals may find important applications as templates for photonic materials and sensors.  相似文献   

7.
This Article describes the use of capillary pressure to initiate and control the rate of spontaneous liquid-liquid flow through microfluidic channels. In contrast to flow driven by external pressure, flow driven by capillary pressure is dominated by interfacial phenomena and is exquisitely sensitive to the chemical composition and geometry of the fluids and channels. A stepwise change in capillary force was initiated on a hydrophobic SlipChip by slipping a shallow channel containing an aqueous droplet into contact with a slightly deeper channel filled with immiscible oil. This action induced spontaneous flow of the droplet into the deeper channel. A model predicting the rate of spontaneous flow was developed on the basis of the balance of net capillary force with viscous flow resistance, using as inputs the liquid-liquid surface tension, the advancing and receding contact angles at the three-phase aqueous-oil-surface contact line, and the geometry of the devices. The impact of contact angle hysteresis, the presence or absence of a lubricating oil layer, and adsorption of surface-active compounds at liquid-liquid or liquid-solid interfaces were quantified. Two regimes of flow spanning a 10(4)-fold range of flow rates were obtained and modeled quantitatively, with faster (mm/s) flow obtained when oil could escape through connected channels as it was displaced by flowing aqueous solution, and slower (micrometer/s) flow obtained when oil escape was mostly restricted to a micrometer-scale gap between the plates of the SlipChip ("dead-end flow"). Rupture of the lubricating oil layer (reminiscent of a Cassie-Wenzel transition) was proposed as a cause of discrepancy between the model and the experiment. Both dilute salt solutions and complex biological solutions such as human blood plasma could be flowed using this approach. We anticipate that flow driven by capillary pressure will be useful for the design and operation of flow in microfluidic applications that do not require external power, valves, or pumps, including on SlipChip and other droplet- or plug-based microfluidic devices. In addition, this approach may be used as a sensitive method of evaluating interfacial tension, contact angles, and wetting phenomena on chip.  相似文献   

8.
Protein assembly at the air-water interface (AWI) occurs naturally in many biological processes and provides a method for creating biomaterials. However, the factors that control protein self-assembly at the AWI and the dynamic processes that occur during adsorption are still underexplored. Using fluorescence microscopy, we investigated assembly at the AWI of a model protein, human serum albumin minimally labeled with Texas Red fluorophore. Static and dynamic information was obtained under low subphase concentrations. By varying the solution protein concentration, ionic strength, and redox state, we changed the microstructure of protein assembly at the AWI accordingly. The addition of pluronic surfactant caused phase segregation to occur at the AWI, with fluid surfactant domains and more rigid protein domains revealed by fluorescence recovery after photobleaching experiments. Protein domains were observed to coalesce during this competitive adsorption process.  相似文献   

9.
10.
Modification of ionic strength of an aqueous or non-aqueous carrier solution can have profound effects on the particle retention behavior in thermal field-flow fractionation (ThFFF). These effects can be considered as either advantageous or not depending on the performance criteria under consideration. Aside from the general increase in retention time of particulate material (latexes and silica particles), our experiments indicate improvement in resolution with increases in electrolyte concentration. Absence of an electrolyte in the carrier solution causes deviations from the theoretically expected linear behavior between the retention parameter lambda (a measure of the extent of interaction between the applied field and the particle) and the reciprocal temperature drop across the channel walls. A negative interaction parameter delta(w), of about -0.170 was determined for 0.105- and 0.220-microm polystyrene (PS) latex particles suspended in either a 0.25 or a 1.0 mM TBAP-containing acetonitrile carrier and for 0.220 microm PS in 0.50 and 1.0 mM NaCl-containing aqueous medium. This work also demonstrates that optimum electrolyte concentrations can be chosen to achieve reasonable experimental run-times, good resolution separations, and shifts in the steric inversion points at lower field strengths, and that too high electrolyte concentrations can have deleterious effects such as band broadening and sample loss through adsorption to the channel accumulation surface. The advantages of using ionic strength rather than field strength to effect desired changes are lowered power consumption and possible application of ThFFF to high temperature-labile samples.  相似文献   

11.
Transport of colloidal particles in porous media is governed by the rate at which the colloids strike and stick to collector surfaces. Classic filtration theory has considered the influence of system hydrodynamics on determining the rate at which colloids strike collector surfaces, but has neglected the influence of hydrodynamic forces in the calculation of the collision efficiency. Computational simulations based on the sphere-in-cell model were conducted that considered the influence of hydrodynamic and Derjaguin-Landau-Verwey-Overbeek (DLVO) forces on colloid attachment to collectors of various shape and size. Our analysis indicated that hydrodynamic and DLVO forces and collector shape and size significantly influenced the colloid collision efficiency. Colloid attachment was only possible on regions of the collector where the torque from hydrodynamic shear acting on colloids adjacent to collector surfaces was less than the adhesive (DLVO) torque that resists detachment. The fraction of the collector surface area on which attachment was possible increased with solution ionic strength, collector size, and decreasing flow velocity. Simulations demonstrated that quantitative evaluation of colloid transport through porous media will require nontraditional approaches that account for hydrodynamic and DLVO forces as well as collector shape and size.  相似文献   

12.
The surface of self-assembled nanoporous silica colloidal crystalline films comprised of 184-nm-diameter silica spheres has been sulfonated using 1,3-propanesultone. The transport of ions through the sulfonated films has been studied using cyclic voltammetry in water as a function of ion charge, pH, and solution ionic strength. We found that the flux of anions through the sulfonated colloidal films is reduced, while the flux of cations is increased, compared to the unmodified colloidal films. This behavior is pH-dependent and is due to electrostatic repulsion/attraction that can be modulated by changing the ionic strength of the contacting solution.  相似文献   

13.
Despite considerable efforts to synthesize nanotubes using porous alumina or polycarbonate membrane templates, few studies have addressed the resulting nanotube dispersion. We prepared dispersions of multilayered polyethylenimine/maleic anhydride alternating copolymer (PEI/MAAC) nanotubes synthesized with porous alumina templates. After mechanical polishing to remove the residual polymer surface layer from templates and subsequent template dissolution, the multilayered PEI/MAAC nanotubes were easily dispersed in water at neutral pH by polyelectrolyte adsorption, producing nanotube dispersions that were stable for at least 3 months. We characterized the dispersions using phase-contrast optical microscopy, electro-optics, electrophoresis, and viscometry to help understand their colloidal properties in the dilute and semidilute regimes. The dispersions were resistant to salt-induced aggregation up to at least 1 mM NaCl and were optically anisotropic when subjected to an electric field or flow. Interestingly, the electrophoretic mobility of polystyrene sulfonate (PSS)-stabilized nanotubes increases with increasing ionic strength, because of the high surface charge and softness of the adsorbed polyelectrolyte. Furthermore, unlike many rod-like colloid systems, the polymer nanotube dispersion has low viscosity because of weak rotary Brownian motions and strong tendency to shear thinning. At the high shear rates achieved in capillary viscometry experiments, however, we observed a slight shear thickening, which can be attributed to transient hydrocluster formation.  相似文献   

14.
Pacheco JR  Chen KP  Hayes MA 《Electrophoresis》2007,28(7):1027-1035
Electrophoretic differential transport of ionic species in a solution moving from a large reservoir into a small channel is investigated numerically. The system setup is similar to the experiments of Polson, Savin, and Hayes (J. Microcol. Sep. 2000, 12, 98), where the bulk flow into a fused-silica capillary was driven by a pressure differential. A critical condition for achieving the defined differential transport near the channel entrance is found and this condition is solely determined by a dimensionless parameter when the geometry of the system is prescribed. This dimensionless parameter is the ratio between the electrophoretic migration velocity of the species based on the apparent electric intensity and the centerline fluid velocity of the fully developed channel flow. Species concentration distributions are also computed for various conditions. A separation technique can be derived from the experimental condition where a targeted division of species can be created at the channel entrance.  相似文献   

15.
Negatively charged silica sol is known to lead to fouling of anion exchange membranes during electrodialysis (ED) as a result of its deposition on the membrane surface. It is known that the fouling potential is related to the physical and electrochemical properties of the silica particles as well as those of the anion exchange membranes. In this study, the properties of the silica sol were characterized in terms of its particle size, turbidity, and zeta potential in order to predict their effects on the electrodialysis performance. In the stability of colloidal particles, the critical coagulation concentrations of silica sol were determined as functions of ionic strength, cation species, and solution pH. In the electrodialysis of NaCl solution containing silica sol with various concentrations of CaCl(2), the colloidal behavior related to deposition and transport was examined during and after electrodialysis. The electrodialysis experiments clearly showed that the deposition and transport of silica sol during electrodialysis were related to the colloidal stability of dispersion.  相似文献   

16.
This review explores the intersection between two important fields of colloid and interface science – that of active colloidal particles and of (passive) particles at fluid-fluid interfaces. The former uses energy input at the particle level to propel particle motions and direct dynamic assemblies. The latter relies on the spontaneous adsorption of particles at fluid interfaces to modify the interfacial energy, rheology, and permeability of biphasic materials. Here, we address two key questions that connect these otherwise distinct fields of study. How do liquid interfaces influence the dynamics of active or driven colloidal particles? How can particle activity influence the dynamics of liquid interfaces? These questions motivate the pursuit of active particle surfactants that move and organize at fluid interfaces to perform useful functions such as enhancing mass transport or modulating interfacial properties. Drawing examples from the literature, we discuss how fluid interfaces can provide a unique environment for the study of active colloids, how surface tension can be harnessed to propel particle motions, and how capillary interactions can be activated to achieve dynamically tunable emulsions and foams. We highlight opportunities for the future study and application of active particles at liquid interfaces.  相似文献   

17.
A new sedimentation field flow fractionation (SdFFF) method is presented for the estimation of the total potential energy of interaction between colloidal particles and the channel wall. The method is based on the variation of the mean cloud thickness in SdFFF due to the variation of the suspension's ionic strength. It requires only two SdFFF experiments at two different ionic strengths and at a constant acceleration field. The found values are compatible with those calculated from the various forms of equations of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory.  相似文献   

18.
Morales MC  Lin H  Zahn JD 《Lab on a chip》2012,12(1):99-108
Sample pre-concentration can be a critical element to improve sensitivity of integrated microchip assays. In this work a converging Y-inlet microfluidic channel with integrated coplanar electrodes was used to investigate transverse DNA and protein migration under uniform direct current (DC) electric fields to assess the ability to concentrate a sample prior to other enzymatic modifications or capillary electrophoretic separations. Employing a pressure-driven flow to perfuse the microchannel, negatively charged samples diluted in low and high ionic strength buffers were co-infused with a receiving buffer of the same ionic strength into a main daughter channel. Experimental results demonstrated that, depending of the buffer selection, different DNA migration and accumulation dynamics were seen. Charged analytes could traverse the channel width and accumulate at the positive bias electrode in a low electroosmotic mobility, high electrophoretic mobility, high ionic strength buffer or migrated towards an equilibrium position within the channel in a high electroosmotic mobility, high electrophoretic mobility, low ionic strength buffer. The various migration behaviours are the result of a balance between the electrophoretic force and a drag force induced by a recirculating electroosmotic flow generated across the channel width due to the bounding walls. Under continuous flow conditions, DNA samples were concentrated several-fold by balancing these transverse electrokinetic forces. The electrokinetic trapping technique presented here is a simple technique which could be expanded to concentrate or separate other analytes as a preconditioning step for downstream processes.  相似文献   

19.
Films of opal, a colloidal crystalline lattice with closely packed structure, are anticipated to become a fundamental material in photonic crystal engineering. One of the technological issues is forming the opal film with a flat and uniform surface over a large area. This article describes a new and simple method for forming an opal film without special equipment. The opal film is formed by drying a colloidal suspension covered on a hydrophilic solid substrate. In the conventional method, a ring-shaped opal usually forms at the edge (contact line) of the suspension on the substrate. The new method improved the process of drying the colloidal suspension free from the ring formation. The driving force of this ring formation is based on capillary flow in the suspension from inside to outside because of the high evaporation rate at the contact line. To prevent capillary flow, the contact line of the suspension was covered with hydrophobic silicone liquid. As a result, ring formation was depressed and flat opal films with uniform structure were formed. The structure comprised cubic closely packed (111) planes, and the opal films were grown to grain sizes larger than 200 microm. In addition, the coating area of the opal film was greater than 75 cm2 using a 4-in. silicone wafer. This new method should be useful for coating high-quality opal film over large areas on solid substrates.  相似文献   

20.
We explore the design and operation of an optical-tweezers electrophoresis apparatus to resolve polymer adsorption dynamics onto a single micro-sphere in a micro-fluidic environment. Our model system represents a broader class of micro-fluidic electrophoresis experiments for biosensing and fundamental colloid and surface science diagnostics. We track the adsorption of 100 kDa poly(ethylene oxide) homopolymer onto a colloidal silica sphere that is optically trapped in a crossed parallel-plate micro-channel. The adsorption dynamics are probed on the ~1 μm particle length scale with ~1 s temporal resolution. Because the particle electrophoretic mobility and channel electro-osmotic flow are exquisitely sensitive to the polymer layer hydrodynamic thickness, particle dynamics can be complicated by polymer adsorption onto the micro-channel walls. Nevertheless, using experiments and a theoretical model of electro-osmotic flow in channels with non-uniform wall ζ-potentials, we show that such influences can be mitigated by adopting a symmetrical flow configuration. The equilibrium hydrodynamic layer thickness of 100 kDa poly(ethylene oxide) on colloidal silica is ~10 nm at polymer concentrations ?10 ppm (weight percent), with the dynamics reflecting polymer solution concentration, flow rate, and polydispersity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号