首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The novel polyoxothioanion [W8S8O8(OH)8(H3WO6]2– was prepared by acido-basic condensation of four [W2S2O2]2+ thiofragments in the presence of tungstate ion. Rb3[W8S8O8(OH)8(H3WO6]13H2O was isolated in the solid state and fully characterized by X-ray diffraction study (monoclinic, C2/m [a=20.3540(1) Å; b=11.8042(2) Å; c=13.9355(2) Å; =90°; =131.134(1)°; =90°]. The molecular structure consists of an octameric {W8S8O8(OH)8} wheel encapsulating a central octahedron {H3WO6}3–. The packing reveals a remarkable 3-D array resulting from connections between Rb+ and octameric wheels. The Rb+ cations form infinite parallel chains, which are mutually connected by the cyclic oxothioanions. The compound was also characterized by infrared spectroscopy and elemental analysis.  相似文献   

2.
By the reaction of cluster [Mo3OS3](dtp)4(H2O) used as starting material with CuI using [3+1] mode, two novel heterometallic-heterobridging cubane-type tetranuclear cluster compounds [CuMo3OS3]·I·(-OAc)[S2P(OC2H5)2]3·L [(I)L=py, (II)L=DMF] [dtp=S2P(OC2H5)2; OAc=OOCCH3] containing [CuMo3OS3] core have been obtained. Compounds (I) and (II) have been characterized by IR, EPR, UV-VIS, electrochemistry and X-ray crystallography. By comparison of these two compounds with the analogous [CuMo3S4] series in the structure and molecular orbital calculation, the influence of mixed S/O bridging on the structure is discussed. It is demonstrated that the {Mo3S3} cluster ring in [Mo3OS3]4+ possesses a similar quasi-aromaticity to [Mo3S4]4+. Crystal data: for (I), space group= ,a=13.781(8)Å,b=14.523(6)Å,c=12.098(6)Å, =98.37(4)°, =109.41(5)°, =105.00(5)°,V=2133(2)Å3,Z=2,R=0.058; for (II), space group= ,a=13.215(4)Å,b=17.818(8)Å,c=9.873(4)Å, =106.06(4)°, =109.78(3)°, =82.00(3)°,V=2100(2)Å3,Z=2,R=0.045.Invited Professor at Fuzhou University.  相似文献   

3.
A series of organometallic molybdenum/iron/sulfur clusters of the general formula [Cp1MoFe3S4Ln]m (Cp1 = η5-C5Me5; L = StBu, SPh, Cl, I, n = 3, m = 1−; Ln = I2(PtBu3), m = 0; L = 2,6-diisopropylphenylisocyanide (ArNC), n = 7, m = 1+) have been synthesized. A cubane cluster (PPh4)[Cp1MoFe3S4(StBu)3] (2) was isolated from a self-assembly reaction of Cp1Mo(StBu)3 (1), FeCl3, LiStBu, and S8 followed by cation exchange with PPh4Br in CH3CN, while an analogous cluster (PPh4)[Cp1MoFe3S4(SPh)3] (3) was obtained from the Cp1MoCl4/FeCl3/LiSPh/PPh4Br reaction system or from a ligand substitution reaction of 2 with PhSH. Treatment of 2 with benzoyl chloride gave rise to (PPh4)[Cp1MoFe3S4Cl3] (4), which was in turn converted to (PPh4)[Cp1MoFe3S4I3] (5) by the reaction with NaI. A neutral cubane cluster Cp1MoFe3S4I2(PtBu3) (6) was generated upon treating 5 with PtBu3. Although reduction of 4 by cobaltocene under the presence of ArNC resulted in a disproportionation of the cubane core to give Fe4S4(ArNC)9Cl (7), a similar reduction reaction of 5 produced [Cp1MoFe3S4(ArNC)7]I (8), where the MoFe3S4 core was retained. The crystal structures of 46, and 8 were determined by the X-ray analysis.  相似文献   

4.
Complexes of Ni(II) and Co(II) of the formulae [Ni(H2O)4(pht)2] (1) and [Co(H2O)4(pht)2]·1,5NH3·H2O (2) (where pht = phenotoinate anion) were obtained and characterized physicochemically. [Ni(H2O)4(pht)2] (1) crystallizes in a monoclinic space group P21/c; a = 11.7358(8), b = 11,1250(8), 11.4182(7) Å; β = 97.076(5)°; V = 1479.41 Å3; Z = 2. The environment around the nickel and cobalt ions can be described as a distorted octahedron. The metal ion was found to bind to four water molecules and two nitrogen atoms derived from two anions of the monodentate phenytoinate. Four intramolecular hydrogen bonds designated as S(6) graph set are found in one [Ni(H2O)4(pht)2] (1) molecule. Two chain HB patterns, constructed by the [Ni(H2O)4(pht)2] molecules extending along the c and b axes, respectively, have been observed. The cobalt complex precipitates with the additional solvent molecules: one and a half of ammonia and one water. The results document the preferential binding of hydantoins to the metal ions through N(3) atom.  相似文献   

5.
Summary The atomic arrangements within the structures of NH4Ag2(AsS2)3 [a=9.557(2),b=7.414(2),c=16.29(1) Å; =91.30(5)°; space group P21/n;R(F)=0.042] and (NH4)5Ag16(AsS4)7 [a=64.49(6),b=6.471(2),c=12.806(4) Å; =95.47(5)°; space group Cc;R(F)=0.073] were determined from single crystal X-ray data. In these two compounds the coordination spheres of the Ag atoms are quite different. In NH4Ag2(AsS2)3, the Ag atoms exhibit a [2+2]- and a [3+1]-coordination to S atoms up to 3.3 Å and with Ag atom neighbours at 2.93 Å and 3.05 Å respectively. In (NH4)5Ag16(AsS4)7, the Ag atoms are — with one exception- [4] coordinated (Ag-S<3.3 Å) and the distances to further Ag atom neighbours are greater than 3.1 Å. NH4Ag2(AsS2)3 represents an ordered cyclo-thioarsenate(III) with three-membered As3S6 rings, (NH4)5Ag16(AsS4)7 a neso-thioarsenate(V) with two split Ag atom positions. Both compounds were synthesized under moderate hydrothermal conditions.
Synthesen und Kristallstrukturen von NH4Ag2(AsS2)3 und (NH4)5Ag16(AsS4)7 mit einer Diskussion über (NH4)Sx Polyeder
Zusammenfassung Die Atomanordnungen in den Strukturen von NH4Ag2(AsS2)3 [a=9.557(2),b=7.414(2),c=16.29(1) Å; =91.30(5)°; Raumgruppe P21/n;R(F)=0.042] und (NH4)5Ag16(AsS4)7 [a=64.49(6),b=6.471(2),c=12.806(4) Å; =95.47(5)°; Raumgruppe Cc;R(F)=0.073] wurden anhand von röntgenographischen Einkristalldaten bestimmt. In diesen beiden Verbindungen sind die Koordinationsverhältnisse um die Ag-Atome sehr unterschiedlich. In NH4Ag2(AsS2)3 besitzen die Ag-Atome bis 3.3 Å eine [2+2]- und [3+1]-Koordination durch S-Atome mit weiteren Ag-Atomen bei 2.93 Å und 3.05 Å. In (NH4)5Ag16(AsS4)7 sind die Ag-Atome mit einer Ausnahme [4]-koordiniert (Ag-S < 3.3 Å), und die Abstände zu weiteren Ag-Atomen sind größer als 3.1 Å. NH4Ag2(AsS2)3 stellt ein geordnetes Cyclothioarsenat(III) mit dreigliedrigen As3S6-Ringen dar, (NH4)5Ag16(AsS4)7 ein Nesothioarsenat (V) mit zwei aufgespaltenen Ag-Positionen. Beide Verbindungen wurden unter mäßigen Hydrothermalbedingungen synthetisiert.
  相似文献   

6.
The bridging aminocarbyne complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3] (R = Me, 1a; Xyl, 1b; 4-C6H4OMe, 1c; Xyl = 2,6-Me2C6 H3) react with acrylonitrile or methyl acrylate, in the presence of Me3NO and NaH, to give the corresponding μ-allylidene complexes [Fe2{μ-η13- Cα(N(Me)(R))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R = Me, R′ = CN, 3a; R = Xyl, R′ = CN, 3b; R = 4-C6H4OMe, R′ = CN, 3c; R = Me, R′ = CO2Me, 3d; R = 4-C6H4OMe, R′ = CO2Me, 3e). Likewise, 1a reacts with styrene or diethyl maleate, under the same reaction conditions, affording the complexes [Fe2{μ-η13-Cα(NMe2)Cβ(R′)Cγ(H)(R″)}(μ-CO)(CO)(Cp)2] (R′ = H, R″ = C6H5, 3f; R′ = R″ = CO2Et, 3g). The corresponding reactions of [Ru2{μ-CN(Me)(CH2Ph)}(μ-CO)(CO)2(Cp)2][SO3CF3] (1d) with acrylonitrile or methyl acrylate afford the complexes [Ru2{μ-η13-Cα(N(Me)(CH2Ph))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R′ = CN, 3h; CO2Me, 3i), respectively.The coupling reaction of olefin with the carbyne carbon is regio- and stereospecific, leading to the formation of only one isomer. C-C bond formation occurs selectively between the less substituted alkene carbon and the aminocarbyne, and the Cβ-H, Cγ-H hydrogen atoms are mutually trans.The reactions with acrylonitrile, leading to 3a-c and 3h involve, as intermediate species, the nitrile complexes [M2{μ-CN(Me)(R)}(μ-CO)(CO)(NC-CHCH2)(Cp)2][SO3CF3] (M = Fe, R = Me, 4a; M = Fe, R = Xyl, 4b; M = Fe, R = 4-C6H4OMe, 4c; M = Ru, R = CH2C6H5, 4d).Compounds 3a, 3d and 3f undergo methylation (by CH3SO3CF3) and protonation (by HSO3CF3) at the nitrogen atom, leading to the formation of the cationic complexes [Fe2{μ-η13-Cα(N(Me)3)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 5a; R = CO2Me, 5b; R = C6H5, 5c) and [Fe2{μ-η13-Cα(N(H)(Me)2)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 6a; R = CO2Me, 6b; R = C6H5, 6c), respectively.Complex 3a, adds the fragment [Fe(CO)2(THF)(Cp)]+, through the nitrile functionality of the bridging ligand, leading to the formation of the complex [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CNFe(CO)2Cp)}(μ-CO)(CO)(Cp)2][SO3CF3] (9).In an analogous reaction, 3a and [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3], in the presence of Me3NO, are assembled to give the tetrameric species [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CN[Fe2{μ- CN(Me)(R)}(μ-CO)(CO)(Cp)2])}(μ-CO)(CO)(Cp)2][SO3CF3] (R = Me, 10a; R = Xyl, 10b; R = 4-C6H4OMe, 10c).The molecular structures of 3a and 3b have been determined by X-ray diffraction studies.  相似文献   

7.
A single MoFe3S4 cubane-like cluster compound has been synthesized through spontaneous self-assembly of simple inorganic salts with organosulfur ligand for the first time. (Et4N)-(MoFe3S4(Et2NCSS)5] CH3CN(1) is quite stable in air. The crystal of 1 is monoclinic with space group P2/c, a=22.897 (3)Å, b= 12.399 (2)Å, c=20.928 (4)Å, β=97.15 (1)°, and Z=4. A full matrix least-squares refinement with 6725 unique reflections for all nonhydrogen atoms gives R=0.068. The anion of 1 is the first isolated single MoFe3S4 cubane cluster with core oxidation state [MoFe3S4]4+. The distance between the two 6-coordinate metal atoms (Mo, Fe) is 2.624 Å, which is the shortest M-M' bond observed for Mo-Fe-S clusters so far and the only one shorter than similar distances in FeMo-cofactor. The bond orders of this anion were calculated by EHMO method and the results coincide with the general rule. The structural feature and the unusual stability of 1 can be attributed to the bidentate chelating effect of Et2NCSS-, which leads to high coordination of metal atoms and the various ligated types.  相似文献   

8.
Summary The title compound6 was prepared from 3-methoxy-1,6-methano[10]annulene (4)via lithiation and oxidative coupling of the intermediate5 with copper(II)chloride. Three stereoisomers (two rotamers of the racemate,6a and6b, and themeso-form6c) were obtained and their configurations assigned both by1H NMR spectroscopy and by X-ray crystal structure analysis of6a.Starting the reaction sequence from optically active 2-bromo-1,6-methano[10]annulene, (–)-3, of known absolute chirality (S)p established the absolute stereochemistry of (+)-6a as (R)p(R)a(R)p and (R)p(S)a(R)p for the dextrorotatory rotamer6b. 3-Methoxy-1,6-methanol[10]annulene (4) as well as6a and6b were easily resolved by enantioselective chromatography of the racemic mixtures on cellulose triacetate (CTA) in ethanol. A rotational barrier of G #=132 kJ·mol–1 between6a and6b was determined both by thermal equilibration and by CD-kinetics.Finally, also themeso-form6c — because of its high rotational barrier (118 kJ) — could be resolved onCTA in its enantiomers ([]D=200° in ethanol). From chiroptical comparison (CD) with6a and6b, resp., the chirality (R)p(S)a(S)p was deduced for (+)-6c.
Stereochemie planarchiraler Verbindungen, 14. Mitt. Statische und dynamische Stereochemie von 3,3-Dimethoxy-2,2-bi(1,6-methano[10]annulenyl)
Zusammenfassung Die Titelverbindung6 wurde aus 3-Methoxy-1,6-methano[10]annulen (4) durch Lithiierung und anschließende oxidative Kupplung des Zwischenproduktes5 mit Kupfer(II)chlorid erhalten. Dabei entstanden3 Stereoisomere (2 Rotamere des Racemates,6a und6b, und diemeso-Form6c), deren Konfiguration sowohl durch1H-NMR-Spektroskopie als auch durch Röntgenstrukturanalyse von6a bestimmt wurden.Ausgehend von optisch aktivem 2-Brom-1,6-methano[10]annulen, (–)-3, bekannter Absolutkonfiguration (S)p, konnte durch diese Reaktionsfolge die absolute Chiralität von (+)-6a als (R)p(R)a(R)p [und (R)p(S)a(R)p für (+)-6b] ermittelt werden. Sowohl4 als auch6a und6b waren durch enantioselektive Chromatographie an Cellulose triacetat (CTA) in Ethanol glatt in ihre Enantiomeren trennbar. Die Rotationsbarriere zwischen6a und6b wurde sowohl durch thermische Äquilibrierung als auch CD-Kinetik zu G #=132 kJ·mol–1 bestimmt.Schließlich ließ sich auch die Mesoform6c wegen ihrer hohen Rotationsbarriere von 118 kJ·mol–1 anCTA glatt in ihre Enantiomeren trennen ([]D=200° in Ethanol). Aus einem chiroptischen Vergleich mit6a bzw.6b (CD) wurde für (+)-6c die Chiralität (R)p(S)a(S)p abgeleitet.
  相似文献   

9.
N-thioamide thiosemicarbazone derived from 4-(methylthio)benzaldehyde (R = H, HL1; R = Me, HL2 and R = Ph, HL3) have been prepared and their reaction with fac-[ReX(CO)3(CH3CN)2] (X = Br, Cl) in methanol gave the adducts [ReX(CO)3(HLn)] (1a X = Cl, n = 1; 1a′ X = Br, n = 1; 1b X = Cl, n = 2; 1b′ X = Br, n = 2; 1c X = Cl, n = 3; 1c′ X = Br, n = 3) in good yield.All the compounds have been characterized by elemental analysis, mass spectrometry (ESI), IR and 1H NMR spectroscopic methods. Moreover, the structures of HL2, HL3, HL3·(CH3)2SO and 1b′·H2O were also elucidated by X-ray diffraction. In 1b′, the rhenium atom is coordinated by the sulphur and the azomethine nitrogen atoms (κS,N3) forming a five-membered chelate ring, as well as three carbonyl and bromide ligands. The resulting coordination polyhedron can be described as a distorted octahedron.The structure of the dimers is based on rhenium(I) thiosemicarbazonates [Re2(L1)2(CO)6] (2a), [Re2(L2)2(CO)6] (2b) and [Re2(L3)2(CO)6] (2c) as determined by X-ray studies. Methods of synthesis were optimized to obtain amounts of these thiosemicarbazonate complexes. In these compounds the dimer structures are achieved by Re-S-Re bridges, where S is the thiolate sulphur from a κS,N3-bidentate thiosemicarbazonate ligand.Some single crystals isolated in the synthesis of 2b contain [Re(L4)(L2)(CO)3] (3b) where L4 (=2-methylamine-5-(para-methylsulfanephenyl)-1,3,4-thiadiazole) is originated in a cyclization process of the thiosemicarbazone. Furthermore, the rhenium atom is coordinate by the sulphur and the thioamidic nitrogen of the thiosemicarbazonate (κS,N2) affording a four-membered chelate ring.  相似文献   

10.
This work reports on the preparation of the complexes [PdCl2(Y1)2], [PdCl2(Y2)2] (Y1 = (p-tolyl)3PCHCOCH3 (1a); Y2 = Ph3PCHCO2CH2Ph (1b)), [Pd{CHP(C7H6)(p-tolyl)2COCH3}(μ-Cl)]2 (2a), [Pd{CHP(C6H4)Ph2CO2CH2Ph}(μ-Cl)]2 (2b), [Pd{CH{P(C7H6)(p-tolyl)2}COCH3}Cl(L)] (L = PPh3 (3a), P(p-tolyl)3 (4a)) and [Pd{CH{P(C6H4)Ph2}CO2CH2Ph}Cl(L)] (L = PPh3 (3b), P(p-tolyl)3 (4b)). Orthometallation and ylide C-coordination in complexes 2a4b are demonstrated by an X-ray diffraction study of 4a.  相似文献   

11.
A dinuclear molybdenum(V) cluster compound (Et4N)2[Mo2S4(i-mnt)2] (i-mnt=l,l-dicyanoethylene-2,2-dithiol, (S2C=C(CN)2]2-) has been prepared by the ligand substitution reaction of Mo2S4(iso-pr2dtp)2 (iso-pr2dtp=S2P(OC3H7)2-) with K2(i-mnt) in the presence of Bt4NI. This cluster was characterized by inrrared spectrum, UV-Vis spectrum and single crystal structure analy-sis. The cluster anion [Mo2S4(i-mnt)2]2- possesses C, symmetry with a crystallographic mirror plane through two bridging S atoms. By the S....S supramolecular interactions between two adjacent cluster anions the [Mo2S4(i-mnt)2]2- anions are linked to form infinite chains along the b axis. Crystal data: monoclinic, space group C2/m, a=1.8748(6), b=1.5360(4), c=1.4322(5) nm, ,β=112.02(2)°, V=3.823(4) nm3, Z=4, Dc=1.50 g/cm3. The final R=0.038 and .RW=0.053 for 3015 observed unique reflections.  相似文献   

12.
Reactions of ω-diphenylphosphinofunctionalized alkyl phenyl sulfides Ph2P(CH2)nSPh (n = 1, 1a; 2, 2a; 3, 3a), sulfoxides Ph2P(CH2)nS(O)Ph (n = 1, 1b; 2, 2b; 3, 3b) and sulfones Ph2P(CH2)nS(O)2Ph (n = 1, 1c; 2, 2c; 3, 3c) with dinuclear chlorido bridged rhodium(I) complexes [(RhL2)2(μ-Cl)2] (L2 = cycloocta-1.5-diene, cod, 4; bis(diphenylphosphino)ethane, dppe, 5) afforded mononuclear Rh(I) complexes of the type [RhCl{Ph2P(CH2)nS(O)xPh-κP}(cod)]1 (n/x = 1/0, 6a; 1/1, 6b; 1/2, 6c; 2/0, 8a; 2/1, 8b; 2/2, 8c; 3/0, 10a; 3/1, 10b; 3/2, 10c) and [RhCl{Ph2P(CH2)nS(O)xPh-κP}(dppe)] (n/x = 1/0, 7a; 1/1, 7b; 1/2, 7c; 2/0, 9a; 2/1, 9b; 2/2, 9c; 3/0, 11a; 3/1, 11b; 3/2, 11c) having the P^S(O)x ligands κP coordinated. Addition of Ag[BF4] to complexes 6-11 in CH2Cl2 led with precipitation of AgCl to cationic rhodium complexes of the type [Rh{Ph2P(CH2)nS(O)xPh-κPS/O}L2][BF4] having bound the P^S(O)x ligands bidentately in a κPS (13a-18a, 15b-18b) or a κPO (13b, 14b, 13c-18c) coordination mode. Unexpectedly, the addition of Ag[BF4] to 6a in THF afforded the trinuclear cationic rhodium(I) complex [Rh3(μ-Cl)(μ-Ph2PCH2SPh-κPS)4][BF4]2·4THF (12·4THF) with a four-membered Rh3Cl ring as basic framework. Addition of sodium bis(trimethylsilyl)amide to complexes 6-11 led to a selective deprotonation of the carbon atom neighbored to the S(O)x group (α-C) yielding three different types of organorhodium complexes: a) Organorhodium intramolecular coordination compounds of the type [Rh{CH{S(O)xPh}CH2CH2PPh2CP}L2] (22a-c, 23a-c), b) zwitterionic complexes [Rh{Ph2PCHS(O)xPh-κPS/O}L2] having κPS (21a, 21b) and κPO (20b/c, 21c) coordinated anionic [Ph2PCHS(O)xPh] ligands, and c) the dinuclear rhodium(I) complex [{Rh{μ-CH(SPh)PPh2CP}(cod)}2] (19). All complexes were fully characterized spectroscopically and complexes 15b, 15c, 12·4THF and 19·THF additionally by X-ray diffraction analysis. DFT calculations of zwitterionic complexes gave insight into the coordination mode of the [Ph2PCHS(O)Ph] ligand (κPS versus κPO).  相似文献   

13.
The effect of the length of alkane spacer in diphosphines on the nuclearity of Ag(I) complexes containing dialkyl dithiophosphates (dtp) ligands has been investigated. 1,1-Bis(diphenylphosphino)methane (dppm) yielded tetranuclear [Ag4(dppm)2{S2P(OEt)2}4] (1), [Ag4(dppm)2{S2P(OiPr)2}4] (3), trinuclear [Ag3(dppm)3{S2P(OEt)2}2](PF6) (2), and a dinuclear [Ag2(dppm)2{S2P(OiPr)}](PF6) (4). The increase in spacer length from one methylene in dppm to two in 1,2-bis(diphenylphosphino)ethane (dppe) resulted in the formation of polymeric, [Ag(dppe){S2P(OR)2}] (R = Et, 5a and 5a′; iPr, 5b), and [Ag43-Cl)(dppe)1.5{S2P(OR)2}3] (R = Et, 6a; iPr, 6b). Compounds 5a, 5b, 6a and 6b were reported earlier [C.W. Liu, B.-J. Liaw, L.-S. Liou, J.-C. Wang, Chem. Commun. (2005) 1983]. Further increase in the chain length to four methylene units in 1,4-bis(diphenylphosphino)butane (dppb) yielded dppb-bridged polymers, [Ag(dppb){S2P(OEt)2}] (7) and [Ag2(dppb){S2P(OEt)2}2] (8). In all the polynuclear compounds, diphosphines acted as P,P′-bridging ligands, while the dtp ligands (S,S′-donors) adopted varieties of coordination patterns: S,S′-chelating (5, 7), S,S′-bridging (4), bimetallic-triconnective, μ221 (1, 3, 8), bimetallic-diconnective, μ22 (2, 3) and trimetallic-triconnective, μ321 (6). Some of the complexes exhibit argentophilicity with Ag?Ag distances in the range, 2.918-3.360 Å. Concomitant bridging of two silver atoms either by dppm and dtp ligands (1, 3 and 4) or two dtp ligands (8) lead to close silver-silver contacts. The diphosphines (dppe and dppb) with longer spacer appeared to favor 1D or 2D polymers due to the flexibility of the spacer within the diphosphine unit by adopting anti conformation as opposed to syn conformation of the dppm linker is revealed in complexes.  相似文献   

14.
By reacting (NH4)2MoS4, FeCl2 and Me2dtcNa at room temperature, we have synthesized in one pot two single cubane-like cluster compounds, MoFe3S4(Me2dtc)5·CH2Cl2 (1) and MoFe3S4-(Me2dtc)6·2CH3CN (3), which were separated by stepwise crystallization. The structure of 3 was solved and refined for 5183 reflections to final R value of 0.069. Compound 3 is a novel cluster possessing the highest core oxidation state [MoFe3S4]6+ and contains two Me2dtc bridges. The structural feature of 3 is reported and the observation that several single cubane-like clusters containing various oxidation states can coexist in an assembly system is discussed.  相似文献   

15.
The syntheses of group 4 metal complexes containing the picolyldicarbollyl ligand DcabPyH [nido-7-HNC5H4(CH2)-8-R-7,8-C2B9H10] (2) are reported. New types of constrained geometry group 4 metal complexes (DcabPy)MCl2, [{(η5-RC2B9H9)(CH2)(η1-NC5H4)}MCl2] (M = Ti, 3; Zr, 4; R = H, a; Me, b), were prepared by the reaction of 2 with M(NMe2)2Cl2 (M = Ti, Zr). The reaction of 2 with M(NMe2)4 in toluene afforded (DcabPy)M(NMe2)2, [{(η5-RC2B9H9)(CH2)(η1-NC5H4)}M(NMe2)2] (M = Ti, 5; Zr, 6; R = H, a; Me, b), which readily reacted with Me3SiCl to yield the corresponding chloride complexes (DcabPy)MCl2 (M = Ti, 3; Zr, 4; R = H, a; Me, b). The structures of the diamido complexes (DcabPy)M(NMe2)2 (M = Ti, 5; Zr, 6) were established by X-ray diffraction studies of 5a, 5b, and 6a, which verified an η51-bonding mode derived from the dicarbollylamino ligand. Related constrained geometry catalyst CGC-type alkoxy titanium complexes, (DcabPy)Ti(OiPr)2 (7), were synthesized by the reaction of 2 with Ti(OiPr)4. Sterically less demanding phenols such as 2-Me-C6H4OH replaced the coordinated amido ligands on (DcabPy)Ti(NMe2)2 (5a) to yield aryloxy stabilized CGC complexes (DcabPy)Ti(OPhMe)2(PhMe  =  2- Me-C6H4, 8). NMR spectral data suggested that an intramolecular Ti-N coordination was intact in solution, resulting in a stable piano-stool structure with two aryloxy ligands residing in two of the leg positions. The aryloxy coordinations were further confirmed by single crystal X-ray diffraction studies on complexes (DcabPy)Ti(OPhMe)2 (8).  相似文献   

16.
《Polyhedron》1987,6(6):1445-1456
Reactions of [Fe2S2(CO)6]2− (3) with [Cl2FeS2MS2]2− [M = Mo (4) or W (6)] and [Cl2FeS2VS2FeCl2]3− (8) in acetonitrile-THF solutions afford the new clusters [MFe3S6(CO)6]2− (M = Mo (5) or W (7)] and [VFe6S8(CO)12]3− (9). (Et4N)2 (5) crystallizes in orthorhombic space group Pbcn with a = 15.314(7) Å, b = 16.627(6) Å, c = 29.971(13) Å, and Z = 8. Cluster 5 is formed by displacement of chloride from 4 by 3 to yield a species with the [Fe23-S)2Fe(μ2-S)2MoS2]2− core arrangement containing one Fe(II) and Mo(VI) in distorted tetrahedral sites. Similar structures are proposed for 7 and 9, with the latter containing two 3 ligands bound to the [VFe2S4]1+ core of 8. Treatment of 5 with RSSR results in oxidative decarbonylation and formation of [Mo2Fe6S8(S2)2(SR)6]4− (10) (R = p-C6H4Cl or p-C6H4Br), which consists of two [MoFe33-S)4]3+ cubane-type subclusters bridged by two μ23-S22− groups. Cluster 10 was also obtained in a direct-assembly system consisting of [MoS4]2− + 3FeCl3+ S22− + 7RS in methanol. Evidence is presented that the solid-state structure of 10 is maintained in solution. The redox change [MoFe32-S)23-S) 2S2]2− (5) → [MoFe33-S)4(S2)]1+ (10) is described as an oxidatively induced core internal conversion in which there is net Fe and S oxidation and Mo reduction. It is argued that the reduction of tetrahedral Mo(VI) to or near Mo(III), stabilized in a six-coordinate site, is a significant factor in the formation of the cubane structure. The formation of the cubane cluster [VFe3S4Cl3(DMF)3]1− from 8 and FeCl2 is similarly promoted by the reduction of tetrahedral V(V) to or near V(III). The syntheses of 5, 7, 9 and 10 illustrate the utility of 3 as a cluster precursor.  相似文献   

17.
Four thorium sulfate compounds have been synthesized and characterized. [Th(SO4)2(H2O)7]·2H2O (ThS1) crystallizes in space group P21/m, a=7.2488(4), b=12.1798(7), c=8.0625(5) Å, β=98.245(1)o; Na10[Th2(SO4)9(H2O)2]·3H2O (ThS2), Pna21, a=17.842(2), b=6.9317(8), c=27.550(3) Å; Na2[Th2(SO4)5(H2O)3]·H2O (ThS3), C2/c, a=16.639(2), b=9.081(1), c=25.078(3) Å, β= 95.322(2)o; [Th4(SO4)7(OH)2(H2O)6]·2H2O (ThS4), Pnma, a=18.2127(9), b=11.1669(5), c=14.4705(7) Å. In all cases the Th cations are coordinated by nine O atoms corresponding to SO4 tetrahedra, OH groups, and H2O groups. The structural unit of ThS1 is an isolated cluster consisting of a single Th polyhedron with two monodentate SO4 tetrahedra and seven H2O groups. A double-wide Th sulfate chain is the basis of ThS2. The structures of ThS3 and ThS4 are frameworks of Th polyhedra and sulfate tetrahedra, and each contains channels that extend through the framework. One of the Th cations in ThS3 is coordinated by a bidentate SO4 tetrahedron, and ThS4 is unusual in the presence of a pair of Th cations that share a polyhedral face.  相似文献   

18.
Treatment of the coordinative unsaturated complexes [M(SRF)3(PMe2Ph)2] (M = Os or Ru; RF = C6F5 or C6F4H-4) with MS2Z (M = Na, S2Z = S2CNEt2; M = K, S2Z = S2COEt) and [Os(SRF)3(PMe2Ph)2] (RF = C6F5 or C6F4H-4) with MS2Z [M = Na; S2Z = S2P(OEt)2] in Me2CO solution, gave the paramagnetic OsIII and RuIII derivatives, [M(SRF)2(S2Z)(PMe2Ph)2]. X-ray crystallography shows that [Os(SC6F5)2(S2CNEt2)(PMe2Ph)2] has an octahedral geometry with trans-fluorothiolates, cis-phosphines and a chelating N,N-diethyldithiocarbamate ligand.  相似文献   

19.
Nucleophilic substitution of Pd(RaaiR′)Cl2 [RaaiR′=1-alkyl-2-(arylazo)imidazole, p-R—C6H4— N=N—C3H2NN-1-R′; where R= H(a)/Me(b)/Cl(c) and R′ = Et(1)/Bz(2)] with adenine (A) in MeCN–water (1:1) at 298 K, to form [Pd(A)2]Cl2, has been studied spectrophotometrically under pseudo-first-order conditions and the analyses support a nucleophilic association path. The reaction follows the rate law, rate = {a+k [A] 02[Pd(RaaiR′)Cl2]: first-order in Pd(RaaiR′)Cl2 and second-order in A. The rate increases as follows: Pd(RaaiEt)Cl2(1) < Pd(RaaiBz)Cl2(2) and Pd(MeaaiR′)Cl2(b) < Pd(HaaiR′)Cl2(a) < Pd(ClaaiR′)Cl2(c). External addition of Cl (LiCl) suppresses the rate (rate 1/[Cl]). The activation parameters, H0 and S0 of the reactions were calculated from the Eyring plot and support the proposed mechanism.  相似文献   

20.
Building on previous single crystal X‐ray structure determinations for the group 1 salts of complex thiosulfate/univalent coinage metal anions previously defined for (NH4)9AgCl2(S2O3)4, NaAgS2O3·H2O and Na4[Cu(NH3)4][Cu(S2O3)2]·NH3, a wide variety of similar salts, of the form , M1 = group 1 metal cation, M2 = univalent coinage metal cation (Cu, Ag), (X = univalent anion), most previously known, but some not, have been isolated and subjected to similar determinations. These have defined further members of the isotypic, tetragonal series, for M1 = NH4, M2 = Cu, Ag, X = NO3, Cl, Br, I, together with the K/Cu/NO3 complex, all containing the complex anion [M2(SSO3)4]7? with M2 in an environment of symmetry, Cu, Ag‐S typically ca. 2.37, 2.58Å, with quasi‐tetrahedral S‐M‐S angular environments. Further salts of the form , n = 1‐3, have also been defined: For n = 3, M2 = Cu, M1/x = K/2.25 or 1 5/6, NH4/6, (and also for the (NH4)4Na/4H2O·MeOH adduct) the arrays take the form with distorted trigonal planar CuS3 coordination environments, Cu‐S distances being typically 2.21Å, S‐Cu‐S ranging between 105.31(4)–129.77(4)°; the silver counterparts take the form for M1 = K, NH4. For n = 2, adducts have only been defined for M2 = Ag, the anions of the M1 = Na, K adducts being dimeric and polymeric respectively: Na6[(O3SS)2Ag(μ‐SSO3)2Ag(SSO3)]·3H2O, K3[Ag(μ‐SSO3)2](∞|∞)·H2O; a polymeric copper(I) counterpart of the latter is found in Na5Cu(NO3)2(S2O3)2 ≡ 2NaNO3·Na3[Cu(μ‐SSO3)2](∞|∞). For n = 1, NaAgS2O3, the an‐ and mono‐ hydrates, exhibit a two‐dimensional polymeric complex anion in both forms but with different contributing motifs. (NH4)13Ag3(S2O3)8·2H2O takes the form (NH4)13[{(O3SS)3Ag(μ‐SSO3)}2Ag], a linearly coordinated central silver atom linking a pair of peripheral [Ag(SSO3)4]7? entities. In Na6[(O3SS)Ag(μ‐SSO3)2Ag(SSO3)]·3H2O, the binuclear anions present as Ag2S4 sheets, the associated oxygen atoms being disposed to one side, thus sandwiching layers of sodium ions; the remarkable complex Na5[Ag3(S2O3)4](∞|∞)·H2O is a variant, in which one sodium atom is transformed into silver, linking the binuclear species into a one‐dimensional polymer. In (NH4)8[Cu2(S2O3)5]·2H2O a binuclear anion of the form [(O3SS)2Cu(μ‐S.SO3)Cu(SSO3)2]8? is found; the complex (NH4)11Cu(S2O3)6 is 2(NH4)2(S2O3)·(NH4)7[Cu(SSO3)4]. A novel new hydrate of sodium thiosulfate is described, 4Na4S2O3·5H2O, largely describable as sheets of the salt, shrouded in water molecules to either side, together with a redetermination of the structure of 3K2S2O3·H2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号