首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For clustering objects, we often collect not only continuous variables, but binary attributes as well. This paper proposes a model-based clustering approach with mixed binary and continuous variables where each binary attribute is generated by a latent continuous variable that is dichotomized with a suitable threshold value, and where the scores of the latent variables are estimated from the binary data. In economics, such variables are called utility functions and the assumption is that the binary attributes (the presence or the absence of a public service or utility) are determined by low and high values of these functions. In genetics, the latent response is interpreted as the ??liability?? to develop a qualitative trait or phenotype. The estimated scores of the latent variables, together with the observed continuous ones, allow to use a multivariate Gaussian mixture model for clustering, instead of using a mixture of discrete and continuous distributions. After describing the method, this paper presents the results of both simulated and real-case data and compares the performances of the multivariate Gaussian mixture model and of a mixture of joint multivariate and multinomial distributions. Results show that the former model outperforms the mixture model for variables with different scales, both in terms of classification error rate and reproduction of the clusters means.  相似文献   

2.
本文基于隐变量的有限混合模型, 提出了一种用于有序数据的Bayes聚类方法\bd 我们采用EM算法获得模型参数的估计, 用BIC准则确定类数, 用类似于Bayes判别的方法对各观测分类\bd 模拟研究结果表明, 本文提出的方法有较好的聚类效果, 对于中等规模的数据集, 计算量是可以接受的.  相似文献   

3.
Supervised clustering of variables   总被引:1,自引:0,他引:1  
In predictive modelling, highly correlated predictors lead to unstable models that are often difficult to interpret. The selection of features, or the use of latent components that reduce the complexity among correlated observed variables, are common strategies. Our objective with the new procedure that we advocate here is to achieve both purposes: to highlight the group structure among the variables and to identify the most relevant groups of variables for prediction. The proposed procedure is an iterative adaptation of a method developed for the clustering of variables around latent variables (CLV). Modification of the standard CLV algorithm leads to a supervised procedure, in the sense that the variable to be predicted plays an active role in the clustering. The latent variables associated with the groups of variables, selected for their “proximity” to the variable to be predicted and their “internal homogeneity”, are progressively added in a predictive model. The features of the methodology are illustrated based on a simulation study and a real-world application.  相似文献   

4.
Latent trait models such as item response theory (IRT) hypothesize a functional relationship between an unobservable, or latent, variable and an observable outcome variable. In educational measurement, a discrete item response is usually the observable outcome variable, and the latent variable is associated with an examinee’s trait level (e.g., skill, proficiency). The link between the two variables is called an item response function. This function, defined by a set of item parameters, models the probability of observing a given item response, conditional on a specific trait level. Typically in a measurement setting, neither the item parameters nor the trait levels are known, and so must be estimated from the pattern of observed item responses. Although a maximum likelihood approach can be taken in estimating these parameters, it usually cannot be employed directly. Instead, a method of marginal maximum likelihood (MML) is utilized, via the expectation-maximization (EM) algorithm. Alternating between an expectation (E) step and a maximization (M) step, the EM algorithm assures that the marginal log likelihood function will not decrease after each EM cycle, and will converge to a local maximum. Interestingly, the negative of this marginal log likelihood function is equal to the relative entropy, or Kullback-Leibler divergence, between the conditional distribution of the latent variables given the observable variables and the joint likelihood of the latent and observable variables. With an unconstrained optimization for the M-step proposed here, the EM algorithm as minimization of Kullback-Leibler divergence admits the convergence results due to Csiszár and Tusnády (Statistics & Decisions, 1:205–237, 1984), a consequence of the binomial likelihood common to latent trait models with dichotomous response variables. For this unconstrained optimization, the EM algorithm converges to a global maximum of the marginal log likelihood function, yielding an information bound that permits a fixed point of reference against which models may be tested. A likelihood ratio test between marginal log likelihood functions obtained through constrained and unconstrained M-steps is provided as a means for testing models against this bound. Empirical examples demonstrate the approach.  相似文献   

5.
We propose a method for selecting variables in latent class analysis, which is the most common model-based clustering method for discrete data. The method assesses a variable’s usefulness for clustering by comparing two models, given the clustering variables already selected. In one model the variable contributes information about cluster allocation beyond that contained in the already selected variables, and in the other model it does not. A headlong search algorithm is used to explore the model space and select clustering variables. In simulated datasets we found that the method selected the correct clustering variables, and also led to improvements in classification performance and in accuracy of the choice of the number of classes. In two real datasets, our method discovered the same group structure with fewer variables. In a dataset from the International HapMap Project consisting of 639 single nucleotide polymorphisms (SNPs) from 210 members of different groups, our method discovered the same group structure with a much smaller number of SNPs.  相似文献   

6.
Cure rate models offer a convenient way to model time-to-event data by allowing a proportion of individuals in the population to be completely cured so that they never face the event of interest (say, death). The most studied cure rate models can be defined through a competing cause scenario in which the random variables corresponding to the time-to-event for each competing causes are conditionally independent and identically distributed while the actual number of competing causes is a latent discrete random variable. The main interest is then in the estimation of the cured proportion as well as in developing inference about failure times of the susceptibles. The existing literature consists of parametric and non/semi-parametric approaches, while the expectation maximization (EM) algorithm offers an efficient tool for the estimation of the model parameters due to the presence of right censoring in the data. In this paper, we study the cases wherein the number of competing causes is either a binary or Poisson random variable and a piecewise linear function is used for modeling the hazard function of the time-to-event. Exact likelihood inference is then developed based on the EM algorithm and the inverse of the observed information matrix is used for developing asymptotic confidence intervals. The Monte Carlo simulation study demonstrates the accuracy of the proposed non-parametric approach compared to the results attained from the true correct parametric model. The proposed model and the inferential method is finally illustrated with a data set on cutaneous melanoma.  相似文献   

7.
This work develops a general procedure for clustering functional data which adapts the clustering method high dimensional data clustering (HDDC), originally proposed in the multivariate context. The resulting clustering method, called funHDDC, is based on a functional latent mixture model which fits the functional data in group-specific functional subspaces. By constraining model parameters within and between groups, a family of parsimonious models is exhibited which allow to fit onto various situations. An estimation procedure based on the EM algorithm is proposed for determining both the model parameters and the group-specific functional subspaces. Experiments on real-world datasets show that the proposed approach performs better or similarly than classical two-step clustering methods while providing useful interpretations of the groups and avoiding the uneasy choice of the discretization technique. In particular, funHDDC appears to always outperform HDDC applied on spline coefficients.  相似文献   

8.
This paper examines the analysis of an extended finite mixture of factor analyzers (MFA) where both the continuous latent variable (common factor) and the categorical latent variable (component label) are assumed to be influenced by the effects of fixed observed covariates. A polytomous logistic regression model is used to link the categorical latent variable to its corresponding covariate, while a traditional linear model with normal noise is used to model the effect of the covariate on the continuous latent variable. The proposed model turns out be in various ways an extension of many existing related models, and as such offers the potential to address some of the issues not fully handled by those previous models. A detailed derivation of an EM algorithm is proposed for parameter estimation, and latent variable estimates are obtained as by-products of the overall estimation procedure.  相似文献   

9.
在一般因子分析模型的基础上,假设连续的潜在向量(公共因子)与另一观察随机向量有关,并假定是一个多元线性回归模型,对由此扩展的因子分析模型进行分析.主要通过EM算法给出模型中参数的估计.文中给出了它的详细推导过程.  相似文献   

10.
Abstract

A simple matrix formula is given for the observed information matrix when the EM algorithm is applied to categorical data with missing values. The formula requires only the design matrices, a matrix linking the complete and incomplete data, and a few simple derivatives. It can be easily programmed using a computer language with operators for matrix multiplication, element-by-element multiplication and division, matrix concatenation, and creation of diagonal and block diagonal arrays. The formula is applicable whenever the incomplete data can be expressed as a linear function of the complete data, such as when the observed counts represent the sum of latent classes, a supplemental margin, or the number censored. In addition, the formula applies to a wide variety of models for categorical data, including those with linear, logistic, and log-linear components. Examples include a linear model for genetics, a log-linear model for two variables and nonignorable nonresponse, the product of a log-linear model for two variables and a logit model for nonignorable nonresponse, a latent class model for the results of two diagnostic tests, and a product of linear models under double sampling.  相似文献   

11.
The interest in variable selection for clustering has increased recently due to the growing need in clustering high-dimensional data. Variable selection allows in particular to ease both the clustering and the interpretation of the results. Existing approaches have demonstrated the importance of variable selection for clustering but turn out to be either very time consuming or not sparse enough in high-dimensional spaces. This work proposes to perform a selection of the discriminative variables by introducing sparsity in the loading matrix of the Fisher-EM algorithm. This clustering method has been recently proposed for the simultaneous visualization and clustering of high-dimensional data. It is based on a latent mixture model which fits the data into a low-dimensional discriminative subspace. Three different approaches are proposed in this work to introduce sparsity in the orientation matrix of the discriminative subspace through \(\ell _{1}\) -type penalizations. Experimental comparisons with existing approaches on simulated and real-world data sets demonstrate the interest of the proposed methodology. An application to the segmentation of hyperspectral images of the planet Mars is also presented.  相似文献   

12.
An existing micro–macro method for a single individual-level variable is extended to the multivariate situation by presenting two multilevel latent class models in which multiple discrete individual-level variables are used to explain a group-level outcome. As in the univariate case, the individual-level data are summarized at the group-level by constructing a discrete latent variable at the group level and this group-level latent variable is used as a predictor for the group-level outcome. In the first extension, that is referred to as the Direct model, the multiple individual-level variables are directly used as indicators for the group-level latent variable. In the second extension, referred to as the Indirect model, the multiple individual-level variables are used to construct an individual-level latent variable that is used as an indicator for the group-level latent variable. This implies that the individual-level variables are used indirectly at the group-level. The within- and between components of the (co)varn the individual-level variables are independent in the Direct model, but dependent in the Indirect model. Both models are discussed and illustrated with an empirical data example.  相似文献   

13.
A mixture approach to clustering is an important technique in cluster analysis. A mixture of multivariate multinomial distributions is usually used to analyze categorical data with latent class model. The parameter estimation is an important step for a mixture distribution. Described here are four approaches to estimating the parameters of a mixture of multivariate multinomial distributions. The first approach is an extended maximum likelihood (ML) method. The second approach is based on the well-known expectation maximization (EM) algorithm. The third approach is the classification maximum likelihood (CML) algorithm. In this paper, we propose a new approach using the so-called fuzzy class model and then create the fuzzy classification maximum likelihood (FCML) approach for categorical data. The accuracy, robustness and effectiveness of these four types of algorithms for estimating the parameters of multivariate binomial mixtures are compared using real empirical data and samples drawn from the multivariate binomial mixtures of two classes. The results show that the proposed FCML algorithm presents better accuracy, robustness and effectiveness. Overall, the FCML algorithm has the superiority over the ML, EM and CML algorithms. Thus, we recommend FCML as another good tool for estimating the parameters of mixture multivariate multinomial models.  相似文献   

14.
Abstract

The primary model for cluster analysis is the latent class model. This model yields the mixture likelihood. Due to numerous local maxima, the success of the EM algorithm in maximizing the mixture likelihood depends on the initial starting point of the algorithm. In this article, good starting points for the EM algorithm are obtained by applying classification methods to randomly selected subsamples of the data. The performance of the resulting two-step algorithm, classification followed by EM, is compared to, and found superior to, the baseline algorithm of EM started from a random partition of the data. Though the algorithm is not complicated, comparing it to the baseline algorithm and assessing its performance with several classification methods is nontrivial. The strategy employed for comparing the algorithms is to identify canonical forms for the easiest and most difficult datasets to cluster within a large collection of cluster datasets and then to compare the performance of the two algorithms on these datasets. This has led to the discovery that, in the case of three homogeneous clusters, the most difficult datasets to cluster are those in which the clusters are arranged on a line and the easiest are those in which the clusters are arranged on an equilateral triangle. The performance of the two-step algorithm is assessed using several classification methods and is shown to be able to cluster large, difficult datasets consisting of three highly overlapping clusters arranged on a line with 10,000 observations and 8 variables.  相似文献   

15.
Count data with excess zeros are often encountered in many medical, biomedical and public health applications. In this paper, an extension of zero-inflated Poisson mixed regression models is presented for dealing with multilevel data set, referred as hierarchical mixture zero-inflated Poisson mixed regression models. A stochastic EM algorithm is developed for obtaining the ML estimates of interested parameters and a model comparison is also considered for comparing models with different latent classes through BIC criterion. An application to the analysis of count data from a Shanghai Adolescence Fitness Survey and a simulation study illustrate the usefulness and effectiveness of our methodologies.  相似文献   

16.
We propose a parsimonious extension of the classical latent class model to cluster categorical data by relaxing the conditional independence assumption. Under this new mixture model, named conditional modes model (CMM), variables are grouped into conditionally independent blocks. Each block follows a parsimonious multinomial distribution where the few free parameters model the probabilities of the most likely levels, while the remaining probability mass is uniformly spread over the other levels of the block. Thus, when the conditional independence assumption holds, this model defines parsimonious versions of the standard latent class model. Moreover, when this assumption is violated, the proposed model brings out the main intra-class dependencies between variables, summarizing thus each class with relatively few characteristic levels. The model selection is carried out by an hybrid MCMC algorithm that does not require preliminary parameter estimation. Then, the maximum likelihood estimation is performed via an EM algorithm only for the best model. The model properties are illustrated on simulated data and on three real data sets by using the associated R package CoModes. The results show that this model allows to reduce biases involved by the conditional independence assumption while providing meaningful parameters.  相似文献   

17.
The latent class mixture-of-experts joint model is one of the important methods for jointly modelling longitudinal and recurrent events data when the underlying population is heterogeneous and there are nonnormally distributed outcomes. The maximum likelihood estimates of parameters in latent class joint model are generally obtained by the EM algorithm. The joint distances between subjects and initial classification of subjects under study are essential to finding good starting values of the EM algorithm through formulas. In this article, separate distances and joint distances of longitudinal markers and recurrent events are proposed for classification purposes, and performance of the initial classifications based on the proposed distances and random classification are compared in a simulation study and demonstrated in an example.  相似文献   

18.
混合Copula模型在中国股市的应用   总被引:1,自引:0,他引:1  
首先给出了描述相依结构的混合Copula模型,然后给出寻求混合Copula模型的EM算法,最后以中国股市的实际数据进行了实证分析,说明混合Copula模型是可以用来描述中国股市的相依结构.  相似文献   

19.
《Fuzzy Sets and Systems》2004,141(2):301-317
This paper presents fuzzy clustering algorithms for mixed features of symbolic and fuzzy data. El-Sonbaty and Ismail proposed fuzzy c-means (FCM) clustering for symbolic data and Hathaway et al. proposed FCM for fuzzy data. In this paper we give a modified dissimilarity measure for symbolic and fuzzy data and then give FCM clustering algorithms for these mixed data types. Numerical examples and comparisons are also given. Numerical examples illustrate that the modified dissimilarity gives better results. Finally, the proposed clustering algorithm is applied to real data with mixed feature variables of symbolic and fuzzy data.  相似文献   

20.
In model-based cluster analysis, the expectation-maximization (EM) algorithm has a number of desirable properties, but in some situations, this algorithm can be slow to converge. Some variants are proposed to speed-up EM in reducing the time spent in the E-step, in the case of Gaussian mixture. The main aims of such methods is first to speed-up convergence of EM, and second to yield same results (or not so far) than EM itself. In this paper, we compare these methods from categorical data, with the latent class model, and we propose a new variant that sustains better results on synthetic and real data sets, in terms of convergence speed-up and number of misclassified objects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号