首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bicyclo[3.1.0]hexane scaffold can lock the conformation of a carbocyclic nucleoside into one of the two antipodal (north or south) conformations typical of conventional nucleosides that normally exist in a rapid, two-state equilibrium in solution. In a recent brief communication, we reported a practical method to access the requisite bicyclo[3.1.0]hexane pseudosugar for the north antipode via an intramolecular olefin-ketocarbene cycloaddition. The most attractive features of this synthesis was that a relatively complex synthon was obtained from simple and inexpensive starting materials and that the resulting racemic mixtures of purine nucleosides could be successfully resolved by adenosine deaminase (ADA) hydrolysis. In this work, we describe the development of a more general, lipase-catalyzed double-acetylation reaction, which could successfully resolve an earlier precursor, 4-(tert-butyldiphenylsilamethoxy)-1-(hydroxymethyl)bicyclo[3.1.0]hexan-2-ol [(+/-)-7], into enantiomerically pure (+)-diacetate 8 and (-)-monoacetate 9. The former diacetate was converted to the conformationally locked (north)-carbocyclic guanosine (+)-17 identical to the one obtained previously by ADA resolution. The present method represents a more general and efficient process applicable to the synthesis of all classes of (north) bicyclo[3.1.0]hexane nucleosides, including pyrimidine analogues. During the lipase-catalyzed resolution, we were able to demonstrate the presence of an unusual acetal-forming reaction that consumed small amounts of the unreactive monoacetate (-)-9. This side reaction was also enzyme-catalyzed and was triggered by the byproduct acetaldehyde generated during the reaction.  相似文献   

2.
A versatile synthetic route has been developed for the synthesis of 2'-O-[2-[(N,N-dimethylamino)oxy]ethyl] (abbreviated as 2'-O-DMAOE) modified purine and pyrimidine nucleosides and their corresponding nucleoside phosphoramidites and solid supports. To synthesize 2'-O-DMAOE purine nucleosides, the key intermediate B (Scheme 1) was obtained from the 2'-O-allyl purine nucleosides (13a and 15) via oxidative cleavage of the carbon-carbon bond to the corresponding aldehydes followed by reduction. To synthesize pyrimidine nucleosides, opening the 2,2'-anhydro-5-methyluridine 5 with the borate ester of ethylene glycol gave the key intermediate B. The 2'-O-(2-hydroxyethyl) nucleosides were converted, in excellent yield, by a regioselective Mitsunobu reaction, to the corresponding 2'-O-[2-[(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)oxy]ethyl] nucleosides (18, 19, and 20). These compounds were subsequently deprotected and converted into the 2'-O-[2-[(methyleneamino)oxy]ethyl] derivatives (22, 23, and 24). Reduction and a second reductive amination with formaldehyde yielded the corresponding 2'-O-[2-[(N,N-dimethylamino)oxy]ethyl] nucleosides (25, 26, and 27). These nucleosides were converted to their 3'-O-phosphoramidites and controlled-pore glass solid supports in excellent overall yield. Using these monomers, modified oligonucleotides containing pyrimidine and purine bases were synthesized with phosphodiester, phosphorothioate, and both linkages (phosphorothioate and phosphodiester) present in the same oligonucleotide as a chimera in high yields. The oligonucleotides were characterized by HPLC, capillary gel electrophoresis, and ESMS. The effect of this modification on the affinity of the oligonucleotides for complementary RNA and on nuclease stability was evaluated. The 2'-O-DMAOE modification enhanced the binding affinity of the oligonucleotides for the complementary RNA (and not for DNA). The modified oligonucleotides that possessed the phosphodiester backbone demonstrated excellent resistance to nuclease with t(1/2) > 24 h.  相似文献   

3.
Under aqueous conditions, 4-azidouracil/tetrazolo[1,5-c]pyrimidin-5(6H)-one nucleosides undergo a very efficient photochemical nitrogen elimination and ring expansion to 1,3,5-triazepin-2,4-dione nucleosides whose structure has been confirmed by X-ray crystallography. In contrast, when the photolysis was attempted under anhydrous conditions in the presence of a nucleophile, a ring contraction reaction occurred, affording 2-oxoimidazolone nucleosides. A mechanism to account for the formation of ring expansion and contraction reactions and involving a carbodiimide intermediate is proposed which is reminiscent of the known photochemical behavior of 2-azidopyridines/tetrazolo[1,5-a]pyridines.  相似文献   

4.
Several pyrido[2,3‐e]pyrimidine fused with other rings have been prepared by intramolecular cyclization of 5‐(4‐chlorophenyl)‐2‐hydrazino‐benzo [6,7]cyclohepta‐[1,2‐b]pyrido[2,3‐e]pyrimidine‐4‐one ( 1 ) with acids, carbon disulfide to form triazole derivatives ( 2,4 ), halo‐ketones to give triazine derivative ( 5 ), β‐ketoesters, β‐cyanoesters, and β‐diketones to yield 2‐(1‐pyrazolyl) derivatives ( 7,9,10 ), and aldehydes to form arylhydrazone derivatives ( 11a,b ) which cyclized to form triazoles ( 12a,b ). Also, acyclic N‐nucleosides are prepared by heating under reflux 2‐hydrazino‐benzo[6,7]cyclohepta[1,2‐b]pyrido[2,3‐e] pyrimidin‐4‐one ( 1 ) with xylose and glucose to give the corresponding acyclic N‐nucleosides ( 13a,b ) which are cyclized to afford the corresponding protected tetra and penta–O‐acetate C‐nucleosides ( 14a,b ). Deacetylating of the latter nucleosides afforded the free acyclic C‐nucleosides ( 15a,b ). © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:34–43, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20248  相似文献   

5.
Methods for the preparation of aza and deaza analogs of purine nucleosides, viz., nucleosides of imidazo[4,5-d]-v-triazines, imidazo[4,5-b]pyridines, and imidazo[4,5-c]pyridines, and their properties are described. References to the synthesis of nucleosides of imidazo[4,5-d]pyridazines, imidazo[4,5-c]pyridazines, and imidazo[4,5-b]pyrazines are also given.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 147–161, February, 1981.  相似文献   

6.
Diastereopure monofluorinated cyclopropanoid nucleosides were synthesized for biological studies. As key intermediates cis- and trans-(+/-)-[1-fluoro-2-(acetoxymethyl)cyclopropyl]methanol were prepared starting from diastereopure fluorinated cyclopropanecarboxylates. The latter were synthesized by copper(i)-catalyzed cyclopropanation of [small alpha]-fluorostyrene with ethyl diazoacetate. After reduction and O-acetylation the diastereomeric (2-fluoro-2-phenylcyclopropyl)methyl acetates were obtained. Oxidative degradation using RuO(4) and reduction of the formed carboxyl group with borane gave the fluorinated alcohols, which were coupled with different nucleobases. After deprotection, the corresponding cyclopropanoid nucleosides of adenine, cytosine, guanine, thymine and uracil were obtained. Antiviral tests revealed for the cis-configured guanosine a low, but specific activity against HSV-1 and HSV-2. In addition low affinities of the adenine derivatives to adenosine receptors were detected.  相似文献   

7.
The replacement of the furanose ring by a cyclopentane in nucleosides generates a group of analogues known generically as carbocyclic nucleosides. These compounds have increased chemical and enzymatic stability due to the absence of a true glycosyl bond that characterizes conventional nucleosides. The additional fusion of a cyclopropane ring to the cyclopentane produces a bicyclo[3.1.0]hexane system that depending on its location relative to the nucleobase is able to lock the embedded cyclopentane ring into conformations that mimic the typical north and south conformations of the furanose ring in conventional nucleosides. These bicyclo[3.1.0]hexane templates have already provided important clues to differentiate the contrasting conformational preferences between kinases and polymerases. Herein, we describe the design, synthesis, and phosphorylation pattern of a new bicyclo[3.1.0]hexane thymidine analogue that seems to possess an ideal spatial distribution of pharmacophores for an optimal interaction with herpes simplex 1 thymidine kinase. The bicyclo[3.1.0]hexane template represents a privileged rigid template for sculpting other carbocyclic nucleosides to meet the demands of specific receptors.  相似文献   

8.
[structures: see text] The synthesis of novel 1',2'-aminomethylene bridged (6-aza-2-oxabicyclo[3.2.0]heptane) "azetidine" pyrimidine nucleosides and their transformations to the corresponding phosphoramidite building blocks (20, 39, and 42) for automated solid-phase oligonucleotide synthesis is reported. The novel bicyclonucleoside "azetidine" monomers were synthesized by two different strategies starting from the known sugar intermediate 6-O-benzyl-1,2:3,4-bis-O-isopropylidene-D-psicofuranose. Conformational analysis performed by molecular modeling (ab initio and MD simulations) and NMR showed that the azetidine-fused furanose sugar is locked in a North-East conformation with pseudorotational phase angle (P) in the range of 44.5-53.8 degrees and sugar puckering amplitude (phi(m)) of 29.3-32.6 degrees for the azetidine-modified T, U, C, and 5-Me-C nucleosides. Thermal denaturation studies of azetidine-modified oligo-DNA/RNA heteroduplexes show that the azetidine-fused nucleosides display improved binding affinities when compared to that of previously synthesized North-East sugar constrained oxetane fused analogues.  相似文献   

9.
The synthesis of some [6:6]- or [6:5]-fused bicyclic pyridazin-6-one nucleosides, starting from 4,5-dichloro-3-nitro(or amino) and 3-hydrazinopyridazin-6-one nucleosides is described.  相似文献   

10.
The hydroxypyridones were found to have wide biological activities such as they can be used as iron chelators for the treatment of iron overload of transfusion-dependant patients[1]. Some hydroxypyridones were discovered to possess moderate reproducible activity against murine P-388 leukemia[2] and showed antimalarial activity[3]. Besides some nucleoside of hydroxypyridones exhibit antitumor activity[4]. The 2-ethyl-3-hydroxy-4-pyridone nucleosides were synthesized by direct condensation of the silylated 2-ethyl-3-hydroxy-4-pyridone with 1,2,3,5-tetra-o-acetyl-β-D-ribofuranose using trimethylsilyl triflate(Me3SiOTf) as catalyst. Deblocking of the protected ribofuranosyl nucleosides was performed by the standard methods.  相似文献   

11.
Liu J  Robins MJ 《Organic letters》2004,6(19):3421-3423
[reaction: see text] 6-(Imidazol-1-yl)-, 6-(benzimidazol-1-yl)-, and 6-(1,2,4-triazol-4-yl)purine nucleosides undergo a nickel-mediated C-C cross-coupling of azole-substituted purine derivatives with arylboronic acids to give good yields of 6-arylpurine nucleosides.  相似文献   

12.
Amphiphilic calix[4]arene derivatives with a nucleobase on the lower rim have been synthesized in good yields by the condensation of calix[4]arenediamine {5,11,17,23-tetra-tert-butyl-25,27-bis(2-aminoethoxy)-26,28-dihydroxycalix[4]arene} with uracilo-N-acetic acid, thymino-N-acetic acid and adenino-N-propionic acid in the presence of CDI in DMF. Monolayers of the amphiphilic calix[4]arene-nucleobase derivatives on the surface of pure water, the aqueous subphases containing complementary nucleosides, were studied by film balance measurement and relaxation experiments. LB films deposited from all subphases were investigated by UV spectra and FT-IR spectroscopy. All the results indicate that the interaction between the nucleobases in the headgroup of amphiphilic p-tert-butylcalix[4]arene derivatives and the complementary nucleosides in the subphase takes place through multiple hydrogen bonding and the nucleosides can be transferred to solid substrates along with their monolayers.  相似文献   

13.
The synthesis and thermal stability of oligodeoxynucleotides (ODNs) containing imidazo[5',4':4,5]pyrido[2,3-d]pyrimidine nucleosides 1-4 (N(N), O(O), N(O), and O(N), respectively) with the aim of developing two sets of new base pairing motifs consisting of four hydrogen bonds (H-bonds) is described. The proposed four tricyclic nucleosides 1-4 were synthesized through the Stille coupling reaction of a 5-iodoimidazole nucleoside with an appropriate 5-stannylpyrimidine derivative, followed by an intramolecular cyclization. These nucleosides were incorporated into ODNs to investigate the H-bonding ability. When one molecule of the tricyclic nucleosides was incorporated into the center of each ODN (ODN I and II, each 17mer), no apparent specificity of base pairing was observed, and all duplexes were less stable than the duplexes containing natural G:C and A:T pairs. On the other hand, when three molecules of the tricyclic nucleosides were consecutively incorporated into the center of each ODN (ODN III and IV, each 17mer), thermal and thermodynamic stabilization of the duplexes due to the specific base pairings was observed. The melting temperature (T(m)) of the duplex containing the N(O):O(N) pairs showed the highest T(m) of 84.0 degrees C, which was 18.2 and 23.5 degrees C higher than that of the duplexes containing G:C and A:T pairs, respectively. This result implies that N(O)and O(N) form base pairs with four H-bonds when they are incorporated into ODNs. The duplex containing N(O):O(N) pairs was markedly stabilized by the assistance of the stacking ability of the imidazopyridopyrimidine bases. Thus, we developed a thermally stable new base pairing motif, which should be useful for the stabilization and regulation of a variety of DNA structures.  相似文献   

14.
Beginning with a known 3-oxabicyclo[3.1.0]hexane scaffold (I), the relocation of the fused cyclopropane ring bond and the shifting of the oxygen atom to an alternative location engendered a new 2-oxabicyclo[3.1.0]hexane template (II) that mimics more closely the tetrahydrofuran ring of conventional nucleosides. The synthesis of this new class of locked nucleosides involved a novel approach that required the isocyanate II (B = NCO) with a hydroxyl-protected scaffold as a pivotal intermediate that was obtained in 11 steps from a known dihydrofuran precursor. The completion of the nucleobases was successfully achieved by quenching the isocyanate with the lithium salts of the corresponding acrylic amides that led to the uracil and thymidine precursors in a single step. Ring closure of these intermediates led to the target, locked nucleosides. The anti-HIV activity of 29 (uridine analogue), 31 (thymidine analogue), and 34 (cytidine analogue) was explored in human osteosarcoma (HOS) cells or modified HOS cells (HOS-313) expressing the herpes simplex virus 1 thymidine kinase (HSV-1 TK). Only the cytidine analogue showed moderate activity in HOS-313 cells, which means that the compounds are not good substrates for the cellular kinases.  相似文献   

15.
Li LS  Liu M  Da SL  Feng YQ 《Talanta》2004,63(2):433-441
The chromatographic behavior of some nucleosides, pyrimidines and purines on a new p-tert-butyl-calix[8]arene-bonded silica gel stationary phase (CABS) were studied by high performance liquid chromatography. Their retention behavior on CABS were compared with those on ODS. The influence of mobile phase variables, such as methanol content, pH and ionic strength on the retention behavior were studied. Some nucleosides, pyrimidines and purines on CABS were successfully separated. The results show that the calix[8]arene-bonded phase exhibits high selectivities for the above analytes in high aqueous mobile phases. According to the chromatographic data, it is indicated that hydrophobic interaction, hydrogen-bonding interaction, and dipole-dipole interaction are mainly responsible for the retention behavior. In addition, in some extent, the vertical stacking action of the analytes on CABS can also change the retention behavior. CABS was superior to ODS in the routine fast separation of nucleosides and bases.  相似文献   

16.
Reaction of 5'-O-tosyl TSAO-m(3)T (1) with amines has led to the synthesis of new classes of bi- and tricyclic nucleosides. Full details about the synthesis of these compounds and a plausible mechanism to explain their obtention are reported. In addition, we describe the development of a second, more efficient, and higher yielding synthetic route as a general approach for the synthesis of some of these bicyclic nucleosides. To study the conformational behavior of the bi- and tricyclic nucleosides described in this paper, intensive NMR investigations and molecular modeling studies were performed. Conformational analysis indicates that the furanose ring of the compounds described here prefers the eastern side of the pseudorotation cycle with the base substituents preferentially in the anti range. The torsion angle gamma describing the C-4'[bond]C-5' is found to prefer the +sc range. These compounds represent a novel class of E-type conformationally restricted bicyclic ribo-nucleosides containing a [3.3.0]-fused carbohydrate moiety. The bicyclic nucleosides described herein present an interesting potential for diverse and selective chemical treatments on the 2'-hydroxyl and/or the functionalities incorporated at the bridge between C-3' and C-5'.  相似文献   

17.
The synthesis of various N‐methylated nucleosides (m6A, m3C, m4C, m3U) is described. These minor nucleosides can be obtained by simple methylation with diazomethane of [2‐(4‐nitrophenyl)ethoxy]carbonyl(npeoc)‐protected nucleosides. These methylated compounds are easily further derivatized to fit into the scheme of the [2‐(dansyl)ethoxy]carbonyl (dnseoc) approach for RNA synthesis (dansyl=[5‐(dimethylamino)naphthalen‐1‐yl]sulfonyl). Various oligoribonucleotides containing N6‐methyladenosine were synthesized, underlining the usefulness of the dnseoc approach, especially for the synthesis of natural tRNA‐derived oligoribonucleotide sequences.  相似文献   

18.
5-(Octa-1,7-diynyl)-2'-deoxyuridine was converted into the furano-dU derivative 7 by copper-catalyzed cyclization; the pyrolodC-derivative 3 was formed upon ammonolysis. The bicyclic nucleosides 3 and 7 as well as the corresponding non-cyclic precursors 4 and 6 all containing terminal C[triple bond]C bonds were conjugated with the non-fluorescent 3-azido-7-hydroxycoumarin 5 employing the copper(I)-catalyzed Huisgen-Sharpless-Meldal cycloaddition "click reaction". Strongly fluorescent 1H-1,2,3-triazole conjugates (30-33) are formed incorporating two fluorescent reporters-the pyrdC nucleoside and the coumarin moiety. Oligonucleotides incorporating 6-alkynyl and 6-alkyl 7H-pyrrolo[2,3-d]pyrimidin-2(3H)-one nucleosides (3 and 2f) have been prepared by solid-phase synthesis using the phosphoramidite building blocks 10 and 13 ; the pyrrolo-dC oligonucleotides are formed during ammonia treatment. The duplex stability of oligonucleotides containing 3 and related derivatives was studied. Oligonucleotides with terminal triple bonded nucleosides such as 3 are more stabilizing than those lacking a side chain with terminal unsaturation; open-chain derivatives (4) are even more efficient. The click reaction was also performed on oligonucleotides containing the pyrdC-derivative and the fluorescence properties of nucleosides, oligonucleotides and their coumarin conjugates were studied.  相似文献   

19.
In recent years, calix[n]arenes (n=4,5,6,7,8) as stationary phase have been introduced into the field of chromatography. In our previous works, we have synthesized, characterized and evaluated two different silica-bonded calix[n]arenes (n=4,6) stationary phase, on which the chromatographic behavior of PAHs, positional isomers,nucleosides and bases was investigated. In this paper we report the preparation of calix[8]arene bonded silica stationary phase, and characterization of its structure and chromatographic behavior.  相似文献   

20.
Methodology for detection of activated benzo[a]pyrene (B[a]P)–nucleoside adducts by liquid chromatography–tandem mass spectrometry is reported. Adducts of B[a]P-dihydrodiol epoxide (B[a]PDE) with guanosine and adenosine have been detected for the first time by use of precursor ion scan and neutral loss scan. B[a]P was then activated by use of UV irradiation and some of the products obtained have been identified by taking advantage of the information obtained for B[a]PDE. Photoactivation has also been carried out in the presence of hydrogen peroxide; this resulted in a higher yield of products with increased production of BaP diones. The reactivity of these compounds toward nucleosides has been tested. The proposed method was successfully used for detection of one stable guanosine–B[a]P dione adduct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号