首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The dynamic interfacial tension for binary mixtures of hydrophobic metal ion extractants and a modifier were measured by using the drop volume technique. Four types of equimolar mixtures were considered: two chelating extractants: 2-hydroxy-5-nonylacetophenone oxime (HNAF) and beta-diketone (1-phenyldecan-1,3-dion), two solvating extractants: trioctylphosphine oxide (TOPO) and tributyl phosphate (TBP), chelating and solvating extractants TOPO and beta-diketone, and the chelating extractant HNAF and the modifier (decanol). With the aid of the Ward and Torday equation the values of the diffusion coefficients of individual compounds and their equimolar mixtures were estimated. It was found that in the case of two types of investigated mixtures, i.e., HNAF + beta-diketone and HNAF + decanol the compound HNAF that was dominant in the mixed adsorbed monolayer and the more interfacially active also determined the kinetics of adsorption in mixed systems. In contrary to the mixture of two chelating reagents, in the case of a mixture of two solvating extractants the mixed system behaves like the less active, though dominant at the interface, reagent TBP. The same effect was observed in both of the considered diluents (toluene and octane).  相似文献   

2.
Adsorption of proteins at the interface of two-liquid systems composed of aqueous ammonium sulfate solution and tert-butanol by phase separation was investigated by drop shape tensiometry. The change of interfacial tension with time and protein concentration as well as upon compression of the adsorbed layer were compared for bovine serum albumin, ovalbumin, β-lactoglobulin, lysozyme, trypsin and horse radish peroxidase. A correlation between the dilatational moduli of various protein films and the partitioning of proteins in the two-liquid system was found, which provides evidence to the role of emulsion stability in protein separation by three-phase partitioning.  相似文献   

3.
Study of the dynamic interfacial tension at the oil/water interface   总被引:1,自引:0,他引:1  
A review is given on three recently developed methods to measure the dynamic interfacial tension at the oil/water interface. These are respectively the dynamic drop volume method, the dynamic capillary method, and the (reversed) funnel method. For each method presented the basic principles are described and a few experimental results are given.Paper presented at the 7th International Conference on Surface Active Substances (Bad-Stuer, DDR, 25–30. April 1988).  相似文献   

4.
The adsorption equilibrium and kinetics of N-lauroyl-N-methylglucamide (MEGA-12) aqueous solution were studied. The critical micelle concentration, the maximum surface excess, and the minimum area per molecule of MEGA-12 were obtained as 2.48 × 10−4 mol/l, 4.883 × 10−6 mol/m2, and 0.34 nm2, respectively. The adsorption kinetics of MEGA-12 was studied by the maximum bubble pressure method. The result shows that in the initial stage or at small MEGA-12 concentrations, the adsorption process is diffusion-controlled; however, it changes to become adsorption-controlled at the end of the process. The effects of temperature, inorganic salts, alcohols, and ionic liquid on the adsorption kinetics were also discussed. The text was submitted by the authors in English.  相似文献   

5.
Dynamic interfacial tension between aqueous solutions of 3-dodecyloxy-2-hydroxypropyl trimethyl ammonium bromide (R12HTAB) and n-hexane were measured using the spinning drop method. The effects of the R12HTAB concentration (the concentration below the CMC) and temperature on the dynamic interfacial tension have been investigated; the reason of the change of dynamic interfacial tension with time has been discussed. The effective diffusion coefficient, Da, and the adsorption barrier, a, have been obtained from the experimental data using the extended Word–Tordai equation. The results show that the dynamic interfacial tension becomes smaller while a becomes higher with increasing R12HTAB concentration in the bulk aqueous phase. Da decreases from 5.56 × 10−12 m−2 s−1 to 0.87 × 10−12 m−2 s−1 while a increases from 5.41 kJ mol−1 to 7.74 kJ mol−1 with the increase of concentration in the bulk solution of R12HTAB from 0.5 × 10−3 mol dm−3 to 4 × 10−3 mol dm−3. Change of temperature affects the adsorption rate through altering Da and a. The value of Da increases from 5.56 × 10−12 m−2 s−1 to 13.98 × 10−12 m−2 s−1 while that of a decreases from 5.41 kJ mol−1 to 5.07 kJ mol−1 with temperature ascending from 303 K to 323 K. The adsorption of surfactant from the bulk phase into the interface follows a mixed diffusion–activation mechanism, which has been discussed in the light of interaction between surfactant molecules, diffusion and thermo-motion of molecules.  相似文献   

6.
7.
The adsorption of crotonaldehyde from aqueous 1 M KCl has been studied by means of differential capacity, zero charge potential and maximum surface tension measurements. The adsorption has been found to obey a Frumkin isotherm with the interaction parameter depending on the electric field. Different possible molecular orientations are suggested depending on charge and coverage. The contribution of the molecular dipole moment and differences in polarizability between the adsorbate and the solvent are considered.  相似文献   

8.
The adsorption of tetramethylthiourea was studied by means of differential capacity measurements. Various parameters have been obtained by back-integration. The extent of orientation of the organic molecule has been estimated from the experimental adsorption potential shift by subtracting the contribution due to adsorbed water molecules calculated according to the Bockris-Habib model. Adsorption of tetramethylthiourea has been found to obey a Frumkin isotherm with the interaction parameter depending on the electric field. A scenario is proposed where different possible orientations are suggested, depending on charge sign and coverage. Such a change in orientation has been interpreted in terms of the electronic polarization effect.  相似文献   

9.
The surface tensions of aqueous solutions containing sodium octylbenzenesulfonate were measured by means of a processor tensiometer at 20°, 25°, 30° and 35°C. A test for the layer model and thickness of the adsorbed phase is proposed. By means of a linear regression the surfactant area at liquid/air interface was calculated. Finally, the molar-and surface-related thermodynamic functions were discussed.  相似文献   

10.
The adsorption and complexation of polystyrene sulfonate (a highly charged anionic polyelectrolyte) and dodecyltrimethylammonium bromide (a cationic surfactant) at the air-water interface can lead to interfacial gels that strongly influence foam-film drainage and stability. The formation and characteristics of these gels have been studied by combining surface tension, ellipsometry, and foam-film drainage experiments. Simultaneously, the solution electromotive force is measured and used to track the polymer-surfactant interactions in the bulk solution. We find that surface gelation occurs above the critical aggregation concentration in solution but before bulk precipitation of the polymer-surfactant complexes. Furthermore, we reveal that strong readsorption of polymer-surfactant complexes occurs during the resolubilization of the precipitated complexes at high surfactant concentrations (i.e., >critical micelle concentration). Seemingly overlooked in the past, this readsorption significantly influences the surface rheological properties and foam-film drainage of these systems.  相似文献   

11.
Adsorption of cationic polyelectrolyte, a homopolymer of maleimide propyl trimethylammonium chloride (MPTMAC), on silica nanoparticles from aqueous solution was studied. The adsorbed amount of MPTMAC and the adsorption layer thickness from solutions of different pH, polyelectrolyte concentration, salt type, and salt concentration were measured. The adsorbed amount exhibited a maximum as a function of the electrolyte concentration. The onset of the decline in the adsorbed amount depended on the type of counterions. The thickness of the adsorption layer increased gradually with increased of electrolyte concentration and leveled off at high electrolyte concentration. The enhanced adsorption in the presence of Na2SO4 can be explained by the bivalent SO4(2-) causing a better shielding effect. With increasing pH the adsorbed amount of MPTMAC increased, whereas the thickness of an adsorbed layer of MPTMAC decreased. At low polyelectrolyte concentrations unstable silica suspensions were observed from a stability test. At high polyelectrolyte concentrations the higher particle coverage caused electrosteric stabilization of the dispersion. However, further increase in MPTMAC concentration after saturated adsorption would flocculate the dispersed system. At low pH, MPTMAC tending to create a loops or tails conformation stabilized the suspension.  相似文献   

12.
Surface parameters--the limiting area, collapse pressure, and compressibility modulus for monolayers of phospholipids containing a determined hydrophobic part (16:0) but different polar parts (PPL) and a determined polar part (PC) but different fatty acids (HPL), characteristic of nonembryogenic (NE) and embryogenic (E) winter wheat calli--were evaluated at 15 degrees C. These parameters were dependent on the kind of hydrophilic group and the size of the hydrophobic part of phospholipids. In the case of PPL, higher values of Alim and picoll were noticed for NE phospholipids. In the case of HPL, lower Alim and higher picoll were detected for NE than for E monolayers. All investigated phospholipid systems stimulated the adsorption of phytohormones from the water subphase. The influence of phytohormones of anionic (IAA, 2-4-D), cationic (kinetin, zeatin), and nonionic character (zearalenone) was examined. It appeared that the surface activity of phytohormones depended strongly on the kind of tissue from which the phospholipid mixture was extracted and, in a lesser degree, on their charge. In PPL systems with a determined hydrophobic part (16:0), no great differences in phytohormone influence on NE and E monolayers were observed (except of IAA). The greatest phytohormone influence on NE monolayers in HPL systems was related to the structure of the hydrophobic part of phospholipids. IAA, the most active (with the highest Alim values) among the phytohormones examined, influenced both HPL and PPL monolayers. This indicated the interactions of IAA with polar groups of phospholipids. Phytohormones also changed the monolayer stability against collapse process and the direction of changes depended on the kind of tissue (embryogenic or nonembryogenic).  相似文献   

13.
Interfacial tension measurements have been performed at the water/hexane interface on mixtures of the bovine milk protein β-lactoglobulin and positively charged cationic surfactants (alkytrimethylammonium bromides). The addition of surfactants with different chain lengths leads to the formation of protein-surfactant complexes with different adsorption properties as compared to those of the single protein. In this study, the formation of complexes has been observed clearly for protein-long chain surfactant (TTAB and CTAB) mixtures, which has shown in addition to specific electrostatic interactions the relevance of hydrophobic interactions between surfactant molecules and the protein. The modeling of interfacial tension data by using a mixed adsorption model provides a quantitative understanding of the mixture behavior. Indeed, the value of the adsorption constant of the protein obtained in the presence of surfactants has strongly varied as compared to the single protein. Actually, this parameter which represents the affinity of the molecule for the interface is representative of the hydrophobic character of the compound and so of its surface activity. Even if a more hydrophobic and more surface active protein-surfactant complex has been formed, the replacement of this complex from the interface by surfactants close to their cmc was observed.  相似文献   

14.
A rigorous thermodynamic treatment appropriate for surface adsorption from mixed aqueous solution of alkali and polyprotic acid was derived. Those equations were applied to mixed aqueous solution/air systems of alkali metal hydroxide and FeIII complex with ethylenediamine- N, N, N′,N′-tetraacetate (Fe-EDTA). Surface density of each species arising from Fe-EDTA was separately evaluated, and thus, surface activity of Fe-EDTA was studied, especially its dependence on pH and how it is influenced by the counter cations. Fe-EDTA was positively adsorbed at the water/air interface at very low pHs and negatively at high pHs. The pH range of positive adsorption of Fe-EDTA with potassium ion, as a counter ion, was wider than that with sodium ion. Thus, potassium ion, a structure breaker, tended to smooth surface adsorption of Fe-EDTA at the water/air interface, whereas sodium ion, a structure maker, tended to withdraw Fe-EDTA from the interfacial region.  相似文献   

15.
The adsorption isotherms of n-decyl-β-D-glucoside (β-C(10)G(1)) as well as various n-alkyl-β-D-maltosides (β-C(n)G(2)) with n=8, 10, 12 and 14 were determined from surface tension measurements. Based on the analysis of the adsorption isotherms, the total free energy change of adsorption was determined and a novel method was proposed to determine the maximum adsorbed amount of surfactant. It can be concluded that the driving force for adsorption first increases with increasing adsorbed amount of the sugar surfactants and then levels off in a plateau. This peculiar behaviour is interpreted as formation of a thin liquid-like alkane film of overlapping alkyl chains at the air/water interface once a certain adsorbed amount is exceeded. The driving force of adsorption depends on the alkyl chain length only and is not affected by the type of the head group. The hydrophobic contribution to the standard free energy change of adsorption was compared with the values of sodium alkylsulfate and alkyltrimethylammonium bromide surfactants. This comparison reveals that the hydrophobic driving force of adsorption is the largest for the sodium alkylsulfates, whereas it is the same for the sugar surfactants and the alkyltrimethylammonium bromides.  相似文献   

16.
Fats are widely present in a large variety of food and represent the main source of energy for the body. In the current study we investigate the behaviour of fatty acids at liquid–liquid interfaces, mimicking some steps of the very complex digestion process. Octanoic acid is used as an example of middle chain fatty acids. For the oil phase we choose sunflower oil as an industrial product and hexane as pure oil.The influence of the fatty acid concentration and the pH of the aqueous phase on the interfacial tension is determined by profile analyse tensiometry (PAT), which allows to examine the way of adsorption and transition of the fatty acids from one phase to the other. Predominantly, the pH affects the dissociation and thereby the strength of the hydrophilic character of the fatty acid. The adsorption behaviour indicates the different interfacial activity of the studied octanoic acid.  相似文献   

17.
18.
Interfacial tensiometry and second harmonic generation (SHG) spectroscopy were applied to examine the adsorption behavior of lauric acid (LA) at a heptane/water interface. From interfacial tensiometry measurements, the adsorption kinetics of LA was revealed to be diffusion-controlled, and the adsorption constant of LA was estimated to be 9.6 x 10(4) M(-1). The adsorption isotherms obtained by SHG measurements were analyzed by taking account of both the molecular orientation of LA at the interface and a surface electric field generated by the adsorbed LA layer. It was confirmed that the carboxylic groups of adsorbed LA molecules were well ordered at the heptane/water interface and the orientation of the carboxylate group was invariant during the adsorption process.  相似文献   

19.
Pendant drop experimental results are presented for the temperature dependence of the interfacial tension between water and the immiscible nematic liquid crystal 4'-pentyl-4-biphenylcarbonitrile (5CB) in the presence of the adsorbed surfactant cetyltrimethylammonium bromide (CTAB). Adsorption of the surfactant lowers the interfacial tension value and is also known from earlier work to induce a transition in liquid crystal surface alignment from planar to homeotropic [Brake et al. Langmuir 2003, 19, 6436.]. Discrepancies exist in the literature regarding the density of 5CB, and the density difference between 5CB and water in any case is very small. However, from the ability to form pendant 5CB drops, one may infer that the density of 5CB exceeds that of water over the entire temperature range studied (28-41 degrees C), in disagreement with the predictions of one earlier report on 5CB. The interfacial tension is shown to exhibit a relative maximum near the bulk 5CB nematic-isotropic transition temperature T(NI), regardless of which published data set of 5CB density values is used to analyze the measurements, with a possible discontinuity in tension occurring at T(NI). The anomalous shape of the interfacial tension curve, depending on the choice of the 5CB density data set, may be quite similar to that recently reported for the interface between 5CB and a hydrophobic, isotropic molten polymer (Rai et al. Langmuir 2003, 19, 7370).  相似文献   

20.
In the Gibbs adsorption equation, the application of solvent activity for the calculation of the surface/interfacial excess is proposed for nonideal or associating or pseudocomponents such as asphaltenes. For the aforementioned systems, only the mass-based phenomenological interfacial excess can be determined based on interfacial tension versus activity data. The use of the mole fraction is compared to the use of the activity when the adsorbed amount of associating asphaltenes is calculated at a water/toluene interface. Langmuir-type isotherms describe the adsorption of asphaltenes at toluene/water interfaces. Asphaltenes were treated to remove the resins and natural surfactants using cyclic precipitation and dissolution of asphaltenes at a fixed aliphatic/aromatic ratio. Different fractions of asphaltenes were obtained by changing the aliphatic/aromatic ratio of the precipitating solvent. The limiting molar masses of asphaltenes measured by vapor pressure osmometry are different for fractions precipitated at different heptane to toluene ratios. The mass-based adsorbed amounts at the water/toluene interface, at a 0.1 asphaltene-to-toluene mass-ratio, varied in the range of 0.8-2.8 mg/m(2), depending on the molar mass of asphaltenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号