首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silane coupling agents are commonly applied to glass fibers to promote fiber/resin adhesion and enhance durability in composite parts. In this study, a coupling agent multilayer on glass was doped with trace levels of the dimethylaminonitrostilbene (DMANS) fluorophore. The fluorophore was immobilized on the glass surface by tethering the molecule to a triethoxy silane coupling agent, creating the DMANS/silane coupling agent molecule (DMSCA). DMSCA was then diluted with commonly used coupling agents and grafted to a glass microscope coverslip to create a model composite interface. A 53-nm blue shift in fluorescence from the immobilized DMSCA can be followed during cure of an epoxy resin overlayer, giving this technique potential to monitor the properties of the fiber/resin interface during composite processing. Contact angle measurements on these coupling agent layers were similar in the presence or absence of the DMSCA molecule, suggesting that trace levels of the fluorescent probe did not affect the structure of the layer. The immobilized DMSCA molecule behaved similarly to the DMANS precursor in solution. Both showed longer wavelength fluorescence in more polar environments. Copyright 2000 Academic Press.  相似文献   

2.
Angle-resolved X-ray photoelectron spectroscopy (XPS) and dynamic secondary ion mass spectroscopy (DSIMS) experiments were conducted to assess the interactions between a diamine curing agent and a glycidoxysilane-modified glass substrate. This effort was motivated by earlier work, in which a fluorescent probe localized in dilute quantities in the silane layer was used to track the penetration of the resin into the silane layer, as well as the resin cure. XPS and DSIMS experiments were performed on the silane layers immersed only in the resin hardener, providing more detailed information about the concentration profile and structural reorganization within the silane layer due specifically to hardener penetration. Dynamic SIMS spectra reveal the presence of hardener in the layer, as indicated by the strong CN- signal throughout the silane layer thickness. The XPS results indicate the presence of an amine gradient within the top 10 nm of the silane coating, with less amine penetration deeper into the silane layer. The XPS data also suggest some level of anisotropy in the molecular structure of the diamine/glycidoxysilane coating, as revealed by the differences in the relative atomic concentrations and peak positions of the C1s components at two different take-off angles.  相似文献   

3.
This paper discloses a feasible and high efficient strategy for wood fiber treatment to introducing multi‐wall carbon nanotubes (MWCNTs) to the surface of wood fibers for the aim of improving the interfacial shear strength of wood fiber/epoxy composite. Briefly, a layer of MWCNT was deposited on wood fibers through sizing wood fibers with epoxy sizing agent containing amine‐treated MWCNTs (MWCNT‐PEI). The surface functional groups, morphology, wettability, and interphase properties of MWCNTs on the surface of wood fiber were studied. The remarkable enhancements were achieved in interfacial shear strength of reinforced composites by dipping wood fiber in MWCNTCOOH suspension and wood fiber sizing containing MWCNT‐PEI.  相似文献   

4.
The mechanical performances of fiberglass reinforced plastics (FRP) are quite different when the glass fibers are treated with vinyl (VS) and methacryl (γ-MPS) functional silane coupling agents. We have studied the structural basis for this difference on the molecular level using Fourier transform infrared spectroscopy (FT-IR). A high-surface-area silica powder is used to study the coupling agent/matrix interface. Both VS and γ-MPS can react with styrene at the interface. However, when E-glass fiber is used as a substrate, only γ-MPS polymerizes in the coupling agent interphase which consists of many layers of coupling agent molecules while the major portion of the VS does not polymerize in the interphase. The effect of glass surfaces, with and without a coupling agent, on the curing of the polyester resin has also been studied. Silane coupling agents participate in the curing of the polyester resin while untreated E-glass fiber surfaces inhibit the polymerization resulting in different structures from the bulk matrix.  相似文献   

5.
纳米SiO_2/聚丙烯酸酯复合乳液的制备与表征   总被引:6,自引:0,他引:6  
根据核壳乳液聚合理论,以经过硅烷偶联剂表面改性的纳米SiO2为种子,采用适当的乳液聚合工艺,制备了纳米SiO2/聚丙烯酸酯复合乳液,并表征了其性能.结果表明,纳米SiO2经过改性后,硅烷偶联剂接枝在其表面;以其为种子制备的复合乳液具有核壳结构,其热稳定性有所提高.  相似文献   

6.
Mechanical properties of glass fiber reinforced composite materials are affected by fiber sizing. A complex film formation, based on a silane film and PVA/PVAc (polyvinyl alcohol/polyvinyl acetate) microspheres on a glass fiber surface is determined at 1) the nanoscale by using atomic force microscopy (AFM), and 2) the macroscale by using the zeta potential. Silane groups strongly bind through the Si? O? Si bond to the glass surface, which provides the attachment mechanism as a coupling agent. The silane groups form islands, a homogeneous film, as well as empty sites. The average roughness of the silanized surface is 6.5 nm, whereas it is only 0.6 nm for the non‐silanized surface. The silane film vertically penetrates in a honeycomb fashion from the glass surface through the deposited PVA/PVAc microspheres to form a hexagonal close pack structure. The silane film not only penetrates, but also deforms the PVA/PVAc microspheres from the spherical shape in a dispersion to a ellipsoidal shape on the surface with average dimensions of 300/600 nm. The surface area value Sa represents an area of PVA/PVAc microspheres that are not affected by the silane penetration. The areas are found to be 0.2, 0.08, and 0.03 μm2 if the ellipsoid sizes are 320/570, 300/610, and 270/620 nm for silane concentrations of 0, 3.8, and 7.2 μg mL?1, respectively. The silane film also moves PVA/PVAc microspheres in the process of complex film formation, from the low silane concentration areas to the complex film area providing enough silane groups to stabilize the structure. The values for the residual silane honeycomb structure heights (Ha) are 6.5, 7, and 12 nm for silane concentrations of 3.8, 7.2, and 14.3 μg mL?1, respectively. The pH‐dependent zeta‐potential results suggest a specific role of the silane groups with effects on the glass fiber surface and also on the PVA/PVAc microspheres. The non‐silanized glass fiber surface and the silane film have similar zeta potentials ranging from ?64 to ?12 mV at pH’s of 10.5 and 3, respectively. The zeta potentials for the PVA/PVAc microspheres on the glass fiber surface and within the silane film significantly decrease and range from ?25 to ?5 mV. The shapes of the pH‐dependent zeta potentials are different in the cases of silane groups over a pH range from 7 to 4. A triple‐layer model is used to fit the non‐silanized glass surface and the silane film. The value of the surface‐site density for ΓXglass and ΓXsilane, in which X denotes the Al? O? Si group, differs by a factor of 10?4, which suggests an effective coupling of the silane film. A soft‐layer model is used to fit the silane‐PVA/PVAc complex film, which is approximated as four layers. Such a simplification and compensation of the microsphere shape gives an approximation of the relevant widths of the layers as the follows: 1) the layer of the silane groups makes up 10 % of the total length (27 nm), 2) the layer of the first PVA shell contributes 30 % to the total length (81 nm), 3) the layer of the PVAc core contributes 30 % to the total length (81 nm), and finally 4) the layer of the second PVA shell provides 30 % of the total length (81 nm). The coverage simulation resulted in a value of 0.4, which corresponds with the assumption of low‐order coverage, and is supported by the AFM scans. Correlating the results of the AFM scans, and the zeta potentials sheds some light on the formation mechanism of the silane‐PVA/PVAc complex film.  相似文献   

7.
A silane coupling agent, γ‐methacryloxypropyltrimethoxysilane, for the surface modification of glass fibers was varied between 0.1 and 0.8 wt %. To understand the role of interfacial adhesion of glass fiber/unsaturated polyester composites, contact angles of the silane‐treated glass fibers were measured by the wicking method on the basis of the modified Washburn equation with deionized water, diiodomethane, and ethylene glycol as testing liquids. As a result, silane‐treated glass fibers led to increased surface free energy, mainly because of their increased specific or polar component. The mechanical interfacial behaviors based on the interlaminar shear strength (ILSS) of the composites determined by short‐beam tests and the critical stress‐intensity factor (KIC) were also improved in the case of silane‐treated composites. The surface free energy and the mechanical interfacial properties especially showed the maximum value in the presence of 0.4 wt % silane coupling agent. It revealed that the increase of a specific component of the surface free energy or hydrogen bonding between the glass fibers and the coupling agents plays an important role in improving the degree of adhesion at interfaces in a composite system. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 55–62, 2003  相似文献   

8.
The copolymerizations of anhydride-cured epoxy resin on fiberglass surfaces treated with a N-methylaminopropyltrimethoxysilane coupling agent has been investigated using Fourier-transform infrared spectroscopy. The structure of the interface of the silane and the resin in fiber-reinforced composites is composed of copolymers of the epoxy resin with the organofunctionality of the deposited silanes. The number of interfacial bonds formed depends on the amount of silane coupling agent deposited on the fiberglass and the reaction conditions. The silane induces additional esterification and increases the curing density of the epoxy matrix near the fiber surface by about 5–10% relative to the bulk resin.  相似文献   

9.
Composite specimens were prepared using soda glass beads and a purified epoxy resin cured with 1,3-propylene diamine. Some beads were treated with a silane coupling agent. The dynamic mechanical properties of these specimens were measured in the temperature range ?190 to +180°C using a free-oscillation torsion pendulum. The dynamic mechanical relaxation spectrum showed no feature that could be attributed to the formation of a new interfacial phase and the torsional moduli were unaffected by the use of the coupling agent. Increasing the glass content of the specimens decreased the damping and increased the modulus. An attempt was made to predict the composite modulus using the Kerner equation. When the specimens were immersed in boiling water, two effects were noted. First, water was absorbed in the epoxy resin matrix and changes in the dynamic spectrum were observed. Second, in samples filled with untreated glass debonding occurred and the presence of free water at the interface was indicated by the appearance of a new peak near 0°C.  相似文献   

10.
A silane coupling agent (SA) was added to silica/rubber composites at different mixing temperatures and the formation of a coupling layer at the silica/rubber interface was investigated by energy-filtering transmission electron microscopy. Bis(triethoxysilypropyl)tetrasulfane (TESPT), which was used as the SA, reacted with the silanol groups on the silica surface and with styrene-butadiene rubber to form an interfacial coupling layer. The silicon and sulfur elemental distributions were analyzed by electron energy loss spectroscopy (EELS) and elemental mapping. The amount of TESPT trapped in the rubber matrix could be qualitatively estimated by EELS, and the in situ formed coupling layer could be characterized by elemental mapping. The result indicated that the formation of the coupling layer was affected by the mixing temperature. The technique described here will contribute to the study of interface-property relationships and the evaluation of the role of SAs in polymeric composites.  相似文献   

11.
Surface anchored poly(methylhydrosiloxane) (PMHS) thin films on oxidized silicon wafers or glass substrates were functionalized via the SiH hydrosilylation reaction with the internal double bonds of 1,2-dilinoleoyl-sn-glycero-3-phosphorylcholine (18:2 Cis). The surface was characterized by X-ray photoelectron spectroscopy, contact angle measurements, atomic force microscopy, and scanning electron microscopy. These studies showed that the PMHS top layer could be efficiently modified resulting in an interfacial high density of phospholipids. Grafted phospholipids made the initially hydrophobic surface (θ = 106°) very hydrophilic and repellent toward avidin, bovine serum albumin, bovine fibrinogen, lysozyme, and α-chymotrypsin adsorption in phosphate saline buffer pH 7.4. The surface may constitute a new background-stable support with increased biocompatibility. Further possibilities of functionalization on the surface remain available owing to the formation of interfacial SiOH groups by Karstedt-catalyzed side reactions of SiH groups with water. The presence of interfacial SiOH groups was shown by zeta potential measurements. The reactivity and surface density of SiOH groups were checked by fluorescence after reaction of a monoethoxy silane coupling agent bearing Alexa as fluorescent probe.  相似文献   

12.
The surfaces of poly(urea-formaldehyde) (PUF) were modified by γ -glycidoxypropyltrimethoxy silane (KH560) in order to improve the interfacial bonding between self-healing PUF microcapsules and epoxy matrix. The modification mechanism between PUF microcapsules and KH560 was studied. X-ray photoelectron spectra (XPS) analyses showed that the silane coupling agent molecular binds strongly to the surfaces of PUF microcapsules. Chemical bond (Si–O–C) and hydrogen bond were formed at interface by the reaction between Si–OH and the hydroxyl group of PUF microcapsules surface. The tensile and impact resistance tests revealed that strength and toughness of the composites was improved significantly. Furthermore, scanning electronic microscopy (SEM) photographs of the fractured surface confirmed that the silane coupling agent plays an important role in improving the interfacial performance between microcapsules and resin matrix.  相似文献   

13.
PP/PET blends (95/5) filled with 50% by weight of glass beads were prepared and studied at morphological and mechanical level, and compared with its analogous samples of glass bead-filled PP. The influence of a compatibilizing agent (maleic anhydride grafted polypropylene) and different silane coupling agents was analysed. It has been found that PET embeds glass bead surface independently on the silane coupling agent employed. Addition of MAPP in PP/PET blends leaded to tensile strength values similar to those of unfilled PP, but rupture takes place in a brittle manner.  相似文献   

14.
The structure of the silane coupling agent interphase of fiber-glass reinforced plastics has been studied by Fourier transform infrared and laser Raman spectroscopy. It is found that there is a degree of order in the molecular organization of the coupling agent interphase for the vinyl and cyclohexyl functional silane coupling agents. When a cyclohexyl functional silane is used, crystalline layers of silanetriol on the glass fibers are observed. The extent of order is determined by the structure of the adsorbed species, which is influenced by the structure of the silane in the treating solution. Two factors introducing disorder in the interphase are the magnitude of aggregation of the silanes in solution and irregularities in the topology of the glass surface.  相似文献   

15.
Sizing glass fibers with silane coupling agents enhances the adhesion and the durability of the fiber/polymer matrix interface in composite materials. There are several tests to determine the interfacial strength between a fiber and resin, but all of them present difficulties in interpreting the results and/or sample preparation. In this study, we observed the influence of different aminosilanes fiber coatings on the resistance of epoxy-based composite materials using a very easy fractographic test. In addition, we tried a new fluorescence method to get information on a molecular level precisely at the interface. Strength was taken into account from two standpoints: (i) mechanical strength and (ii) the resistance to hydrolysis of the interface in oriented glass-reinforced epoxy-based composites. Three silanes: gamma-aminopropyltriethoxysilane, gamma-Aminopropylmethyldiethoxysilane, and gamma-Aminopropyldimethylethoxysilane were used to obtain different molecular structures at the interface. It was concluded that: (i) the more accessible amine groups are, the higher the interface rigidity is; (ii) an interpenetrating network mechanism seems to be the most important for adhesion and therefore to the interfacial strength; and (iii) the higher the degree of crosslinking in the silane coupling layer is, the higher the hydrolytic damage rate is.  相似文献   

16.
The curing process of an epoxide system was studied at the interface formed between a silane-coated glass fiber and an epoxy matrix. The gradient in the structure of the epoxy resin as a result of the cure process at the fiber/matrix interfacial region was monitored by FTIR imaging. For comparison, the epoxy curing at the interface formed between the epoxy resin and (a) an uncoated glass fiber and (b) a polyorganosiloxane (obtained from the silane used for the glass-fiber coating) were also monitored. Chemically specific images of the OH and the H-N-H groups near the interface region were obtained. These images suggest that there is a chemical gradient in the structure of the matrix from the fiber surface to the polymer bulk due to different conversions. The basis of the different kinetics of the curing reactions is a result of amino group inactivation at the interface. This deactivation translates into an off-stoichiometry of the reaction mixture, which is a function of the distance from the surface of the glass fiber.  相似文献   

17.
The evolution of structure, and thermal and dynamic mechanical properties of a liquid crystalline epoxy during curing has been studied with differential scanning calorimetry (DSC), polarized optical microscopy, x-ray scattering, and dynamic mechanical analysis. The liquid crystalline epoxy was the diglycidyl ether of 4,4′-dihydroxy-α-methylstilbene (DGEDHMS). Two curing agents were used in this study: a di-functional amine, the aniline adduct of DGEDHMS, and a tetra-functional sulfonamido amine, sulfanilamide. The effects of curing agent, cure time, and cure temperature have been investigated. Isothermal curing of the liquid crystalline epoxy with the di-functional amine and the tetra-functional sulfonamido amine causes an increase in the mesophase stability of the liquid crystalline epoxy resin. The curing also leads to various liquid crystalline textures, depending on the curing agent and cure temperature. These textures coarsen during the isothermal curing. Moreover, curing with both curing agents results in a layered structure with mesogenic units aligned perpendicular to the layer surfaces. The layer thickness decreases with cure temperature for the systems cured with the tetra-functional curing agent. The glass transition temperature of the cured networks rises with increasing cure temperature due to the increased crosslink density. The shear modulus of the cured networks shows a strong temperature dependence. However, it does not change appreciably with cure temperature. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 2363–2378, 1997  相似文献   

18.
以聚醚醚酮/钡玻璃粉(PEEK-BGF)复合材料为基体, 通过硅烷偶联剂, 在复合材料表面构建具有生物活性的纳米羟基磷灰石(nHA)和甲基丙烯酸酯基的光固化树脂复合涂层. 采用扫描电子显微镜(SEM)和X射线光电子能谱(XPS)分析了材料表面形貌和元素分布, 测试了涂层与复合材料之间的粘接强度. 通过检测大鼠成骨细胞总蛋白含量和碱性磷酸酶表达水平, 评价新型光固化纳米羟基磷灰石/聚甲基丙烯酸酯(nHA/PMMA)复合涂层的生物活性. 研究结果表明, nHA填充的光固化复合材料形成粗糙的表面, 随着nHA的填充量提高, 涂层表面生物学活性得到提高.  相似文献   

19.
In order to improve the rheological behavior of the nanosilica composite no-flow underfill, filler surface treatment using silane coupling agents was investigated to reduce the filler-filler interaction and to achieve the mono-dispersity of the nanosilica in the underfill resin. The experimental conditions of the surface treatment were investigated in a design of experiment (DOE) in terms of the pre-treatment methods, coupling agent types, concentrations, and treatment durations. The particle dispersion after treatment was evaluated by the laser particle analyzer and the transmission electron microscopy (TEM). A mono-dispersed nanosilica solution in the polar medium was achieved using optimal experimental condition. The surface chemistry of the nanosilica was studied using Fourier transformed infrared spectroscopy (FTIR). The wettability of underfill resin and water on the silane treated glass slides was studied using a goniometer. Based on the investigations, the silane-treated nanosilica fillers were incorporated into an underfill resin to formulate a nanocomposite no-flow underfill. It was found that the proper filler treatment could significantly reduce the viscosity of the nanocomposite.  相似文献   

20.
The effect of sized carbon fibers on the solid-state cure of poly(p-phenylene sulfide) (PPS) was studied using differential scanning calorimetry. PPS resin reinforced with sized carbon fiber exhibited the largest cure peak for all cure temperatures and showed a second peak at low cure temperature which was absent in both PPS reinforced with desized carbon fiber and neat PPS resin. In a separate experiment in which epoxy prepolymer/PPS mixture was cured, the exothermic reaction was related to the presence of the epoxy sizing used on the carbon fiber. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号