首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
2.
Density functional theory and ab initio molecular orbital calculations show that the observed inability of cationic hydridoiridium(III) complexes with beta-aminophosphane ligands to catalyse the direct hydrogenation of carbonyl compounds with dihydrogen ("H2-hydrogenation") in contrast to their ruthenium(II) equivalents is due to the inability of H2 to displace a coordinated solvent molecule from an intermediate hydrido complex.  相似文献   

3.
The factors governing the stability and the reactivity towards cyclic esters of heteroleptic complexes of the large alkaline earth metals (Ae) have been probed. The synthesis and stability of a family of heteroleptic silylamido and alkoxide complexes of calcium [{LOi}Ca? Nu(thf)n] supported by mono‐anionic amino ether phenolate ligands (i=1, {LO1}?=4‐(tert‐butyl)‐2,6‐bis(morpholinomethyl)phenolate, Nu?=N(SiMe2H)2?, n=0, 4 ; i=2, {LO2}?=2,4‐di‐tert‐butyl‐6‐{[2‐(methoxymethyl)pyrrolidin‐1‐yl]methyl}phenolate, Nu?=N(SiMe2H)2?, n=0, 5 ; i=4, {LO4}?=2‐{[bis(2‐methoxyethyl)amino]methyl}‐4,6‐di‐tert‐butylphenolate, Nu?=N(SiMe2H)2?, n=1, 6 ; Nu?=HC?CCH2O?, n=0, 7 ) and those of the related [{LO3}Ae? N(SiMe2H)2] ({LO3}?=2‐[(1,4,7,10‐tetraoxa‐13‐azacyclopentadecan‐13‐yl)methyl]‐4,6‐di‐tert‐butylphenolate Ae=Ca, 1 ; Sr, 2 ; Ba, 3 ) have been investigated. The molecular structures of 1 , 2 , [( 4 )2], 6 , and [( 7 )2] have been determined by X‐ray diffraction. These highlight Ae???H? Si internal β‐agostic interactions, which play a key role in the stabilization of [{LOi}Ae? N(SiMe2H)2] complexes against ligand redistribution reactions, in contrast to regular [{LOi}Ae? N(SiMe3)2]. Pulse‐gradient spin‐echo (PGSE) NMR measurements showed that 1 , 4 , 6 , and 7 are monomeric in solution. Complexes 1 – 7 mediate the ring‐opening polymerization (ROP) of L ‐lactide highly efficiently, converting up to 5000 equivalents of monomer at 25 °C in a controlled fashion. In the immortal ROP performed with up to 100 equivalents of exogenous 9‐anthracenylmethanol or benzyl or propargyl alcohols as a transfer agent, the activity of the catalyst increased with the size of the metal ( 1 < 2 < 3 ). For Ca‐based complexes, the enhanced electron‐donating ability of the ancillary ligand favored catalyst activity ( 1 > 6 > 4 ≈ 5 ). The nature of the alcohol had little effect over the activity of the binary catalyst system 1 /ROH; in all cases, both the control and end‐group fidelity were excellent. In the living ROP of L ‐LA, the HC?CCH2O? initiating group (as in 7 ) proved superior to N(SiMe2H)2? or N(SiMe3)2? (as in 6 or [{LO4}Ca? N(SiMe3)2] ( B ), respectively).  相似文献   

4.
5.
6.
Recently described and fully characterized trinuclear rhodium‐hydride complexes [{Rh(PP*)H}32‐H)33‐H)][anion]2 have been investigated with respect to their formation and role under the conditions of asymmetric hydrogenation. Catalyst–substrate complexes with mac (methyl (Z)‐ N‐acetylaminocinnamate) ([Rh(tBu‐BisP*)(mac)]BF4, [Rh(Tangphos)(mac)]BF4, [Rh(Me‐BPE)(mac)]BF4, [Rh(DCPE)(mac)]BF4, [Rh(DCPB)(mac)]BF4), as well as rhodium‐hydride species, both mono‐([Rh(Tangphos)‐ H2(MeOH)2]BF4, [Rh(Me‐BPE)H2(MeOH)2]BF4), and dinuclear ([{Rh(DCPE)H}22‐H)3]BF4, [{Rh(DCPB)H}22‐H)3]BF4), are described. A plausible reaction sequence for the formation of the trinuclear rhodium‐hydride complexes is discussed. Evidence is provided that the presence of multinuclear rhodium‐hydride complexes should be taken into account when discussing the mechanism of rhodium‐promoted asymmetric hydrogenation.  相似文献   

7.
The gas-phase acidity of R--XH (R=H, CH(3), CH(2)CH(3), CH==CH(2), C[triple chemical bond]CH; X=Be, Mg, Ca) alkaline-earth-metal derivatives has been investigated through the use of high-level CCSD(T) calculations by using a 6-311+G(3df,2p) basis set. BeH(2) is a stronger acid than BH(3) and CH(4) for two concomitant reasons: 1) the dissociation energy of the Be--H bond is smaller than the dissociation energies of the B--H and C--H bonds, and 2) the electron affinity of BeH(.) is larger in absolute value than those of BH(2) (.) and CH(3) (.). The acidity also increases on going from BeH(2) to MgH(2) due to these two same factors. Quite importantly, despite the fact that the X--H bonds in the R--XH (X=Mg, Ca) derivatives exhibit the expected X(delta+)--H(delta-) polarity, they behave as metal acids in the gas phase and only Be derivatives behave as carbon acids in the gas phase. The ethylberyllium hydride exhibits an unexpected high acidity compared with the methyl derivative because deprotonation of the system is accompanied by a cyclization that stabilizes the anion. Similarly to that found for derivatives that contain heteroatoms from groups 14, 15, and 16, the unsaturated compounds are stronger acids than the saturated counterparts, with the only exception of the Ca-vinyl derivative. Most importantly, among ethyl, vinyl, and ethynyl derivatives containing a heteroatom of the main group of the Periodic Table, those containing Be, Mg, and Ca are among the strongest gas-phase acids.  相似文献   

8.
9.
The unexpected but facile preparation of the silver salt of the least coordinating [(RO)3Al‐F‐Al(OR)3]? anion (R=C(CF3)3) by reaction of Ag[Al(OR)4] with one equivalent of PCl3 is described. The mechanism of the formation of Ag[(RO)3Al‐F‐Al(OR)3] is explained based on the available experimental data as well as on quantum chemical calculations with the inclusion of entropy and COSMO solvation enthalpies. The crystal structures of (RO)3Al←OC4H8, Cs+[(RO)2(Me)Al‐F‐Al(Me)(OR)2]?, Ag(CH2Cl2)3+[(RO)3Al‐F‐Al(OR)3]? and Ag(η2‐P4)2+[(RO)3Al‐F‐Al(OR)3]? are described. From the collected data it will be shown that the [(RO)3Al‐F‐Al(OR)3]? anion is the least coordinating anion currently known. With respect to the fluoride ion affinity of two parent Lewis acids Al(OR)3 of 685 kJ mol?1, the ligand affinity (441 kJ mol?1), the proton and copper decomposition reactions (?983 and ?297 kJ mol?1) as well as HOMO level and HOMO–LUMO gap and in comparison with [Sb4F21]?, [Sb(OTeF5)6]?, [Al(OR)4]? as well as [B(RF)4]? (RF=CF3 or C6F5) the [(RO)3Al‐F‐Al(OR)3]? anion is among the best weakly coordinating anions (WCAs) according to each value. In contrast to most of the other cited anions, the [(RO)3Al‐F‐Al(OR)3] anion is available by a simple preparation in conventional inorganic laboratories. The least coordinating character of this anion was employed to clarify the question of the ground state geometry of the Ag(η2‐P4)2+ cation (D2h, D2 or D2d?). In agreement with computational data and NMR spectra it could be shown that the rotation along the Ag‐(P‐P‐centroid) vector has no barrier and that the structure adopted in the solid state depends on packing effects which lead to an almost D2h symmetric Ag(η2‐P4)2+ cation (0 to 10.6° torsion) for the more symmetrical [Al(OR)4]? anion, but to a D2 symmetric Ag(η2‐P4)2+ cation with a 44° twist angle of the two AgP2 planes for the less symmetrical [(RO)3Al‐F‐Al(OR)3]? anion. This implies that silver back bonding, suggested by quantum chemical population analyses to be of importance, is only weak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号