首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
聚对苯二甲酸丁二酯-聚四亚甲基醚多嵌段共聚物的研究   总被引:5,自引:1,他引:5  
合成了硬段含量和软段分子量不同的聚对苯二甲酸丁二酯-聚四亚甲基醚(PBT-PTMG)多嵌段共聚物。研究了硬段含量和软段分子量对嵌段共聚合过程的影响。当软段分子量较大、硬段含量较高时,在嵌段共缩聚过程中有均聚物伴生。当软段分子量在2000左右,硬段含量在20%左右时,基本上不生成均聚物。硬段重量含量为 20%的低硬段 PBT-PTMG多嵌段共聚物是结晶的。由它纺成的弹体纤维有良好的力学性能和弹性回复。热处理能改进纤维的弹性回复。  相似文献   

2.
合成了以聚α,α-二甲基-β-丙内酯(PPVL)为硬段,聚己二酸1,2-丙二醇酯(PPA)、聚丁二烯(PBD)及氢化聚丁二烯(HPBD)为软段的ABA型嵌段共聚物及以聚α-甲基苯乙烯(PαMS)和PPVL为硬段,PBD为软段的ABC型嵌段共聚物。发现嵌段共聚物中PPVL的1/T_m∝[软段]/[PPVL],软段含量对降低T_m与力学性能的影响均为PPVL-PPA-PPVL>PPVL-HPBD-PPVL>PPVL-PBD-PPVL,符合软硬段相容性下降的趋势;PPVL-PBD-PαMS的力学性能低于PPVL-PBD-PPVL与PαMS-PBD-PαMS,是因结晶的PPVL与无规的PαMS互不相容。  相似文献   

3.
本工作合成了以聚α-甲基苯乙烯(PαMS)为硬段、聚丁二烯(PBD)及氢化聚丁二烯(HPBD)为软段的两种ABA型三嵌段共聚物。研究了其合成方法、结构与性能,虽然这两种三嵌段共聚物软段T_g相近,均在-25℃左右,但由于氢化聚丁二烯的溶度参数很高,与聚α-甲基苯乙烯的相容性大,以致PαMS-HPBD-PαMS的断裂伸长,断裂强度及回弹性和硬段T_g均较之PαMS-PBD-PαMS有明显下降。  相似文献   

4.
高硬段含量和高软段分子量的聚酯-聚醚多嵌段共聚物有明显的组成不均一性,可分离出大量高熔点的氯仿不溶组份.通过和5mol%间苯二甲酸二甲酯(DMI)共聚,可改进其表观组成均一性,得到不含氯仿不溶物和力学性能优良的硬段含量为40wt%、软段分子量为4000的聚对苯二甲酸乙二酯-聚乙醇醚多嵌段共聚物(PET-PEG).另一合成途径是以间苯二甲酸(IPA)酸解 PET,再和端羟基聚乙二醇醚共缩聚,也可制得相应的改性 PET-PEG.降低聚醚分子量可以有效地改进其组成均一性.  相似文献   

5.
孙骥 《应用化学》1986,(2):87-88
以不同分量的α,ω-双(γ-氨丙基)聚二甲基硅氧烷预聚物为软段,分别以聚芳 酯、聚酰亚胺为硬段合成了嵌段长短不同及含量不同的聚有机硅氧烷-聚芳酯嵌段共聚物和聚有机硅氧烷-聚酰亚胺嵌段共聚物。  相似文献   

6.
以聚丙烯酰胺(PAM)为大分子引发剂, 采用开环聚合方法, 在N,N-二甲基甲酰胺(DMF)中引发L-谷氨酸苄酯环内酸酐(BLG-NCA)聚合合成了两亲性聚丙烯酰胺/聚L-谷氨酸苄酯接枝共聚物(PAM-g-BLG), 采用IR, 1H NMR和GPC方法对共聚物结构进行了表征; 用芘作荧光探针, 研究了共聚物胶束的形成及其临界胶束浓度(cmc), 利用动态光散射(DLS)和透射电镜(TEM)研究了胶束的粒径分布和形态. 结果表明, PAM能够引发BLG-NCA开环聚合得到接枝共聚物, 在一定条件下接枝共聚物能够形成球形的稳定胶束, cmc值和胶束粒径随着共聚物中疏水性聚L-谷氨酸苄酯(PBLG)链段含量的增加而减小.  相似文献   

7.
本文采用活性阴离子聚合方法合成聚(苯乙烯-ε-己内酯)嵌段共聚物。研究了聚合反应条件,并用GPC、柱上溶解分级及红外光谱进行表征。对产物进行结构分析,产物为聚(苯乙烯-ε-己内酯)嵌段共聚物,具有多相结构,是由无定形聚苯乙烯链段、无定形聚-ε-己内酯链段和结晶型聚-ε-己内酯链段组成的嵌段共聚物。对该嵌段共聚物的性能进行了测试。  相似文献   

8.
研究了由温敏的聚(2-乙基-2-噁唑啉)和pH值敏感的聚(L-谷氨酸)组成的三嵌段共聚物,聚(2-乙基-2-噁唑啉)-b-聚(ε-己内酯)-b-聚(L-谷氨酸)的合成方法,(1)以对甲苯磺酸甲酯为引发剂引发2-乙基-2-噁唑啉进行正离子开环聚合反应,得到了羟基封端的聚(2-乙基-2-噁唑啉)(PEOz-OH);(2)以PEOz-OH为引发剂,以辛酸亚锡为催化剂,在氯苯中合成了PEOz-b-聚(ε-己内酯)两嵌段共聚物(PEOz-b-PCL-OH);(3)将PEOz-b-PCL-OH末端的羟基转换为氨基,得到氨基封端的两嵌段共聚物(PEOz-b-PCL-NH2);(4)以PEOz-b-PCL-NH2为引发剂引发γ-苄基-L-谷氨酸-N-羧酸酐(BLG-NCA)开环聚合,得到了PEOz-b-PCL-b-聚(γ-苄基-L-谷氨酸)(PEOz-b-PCL-b-PBLG)三嵌段共聚物;(5)以HBr的醋酸溶液为脱保护剂脱去苄基保护基,得到PEOz-b-PCL-b-聚(L-谷氨酸)(PEOz-b-PCL-b-PLGlu)三嵌段共聚物.采用1H-NMR、GPC和FT-IR表征了各步聚合物的结构、分子量和分子量分布.  相似文献   

9.
研究了由温敏的聚(2-乙基-2-噁唑啉)和pH值敏感的聚(L-谷氨酸)组成的三嵌段共聚物,聚(2-乙基-2-噁唑啉)-b-聚(ε-己内酯)-b-聚(L-谷氨酸)的合成方法,(1)以对甲苯磺酸甲酯为引发剂引发2-乙基-2-噁唑啉进行正离子开环聚合反应,得到了羟基封端的聚(2-乙基-2-噁唑啉)(PEOz-OH);(2)以PEOz-OH为引发剂,以辛酸亚锡为催化剂,在氯苯中合成了PEOz-b-聚(ε-己内酯)两嵌段共聚物(PEOz-b-PCL-OH);(3)将PEOz-b-PCL-OH末端的羟基转换为氨基,得到氨基封端的两嵌段共聚物(PEOz-b-PCL-NH2);(4)以PEOz-b-PCL-NH2为引发剂引发γ-苄基-L-谷氨酸-N-羧酸酐(BLG-NCA)开环聚合,得到了PEOz-b-PCL-b-聚(γ-苄基-L-谷氨酸)(PEOz-b-PCL-b-PBLG)三嵌段共聚物;(5)以HBr的醋酸溶液为脱保护剂脱去苄基保护基,得到PEOz-b-PCL-b-聚(L-谷氨酸)(PEOz-b-PCL-b-PLGlu)三嵌段共聚物.采用1H-NMR、GPC和FT-IR表征了各步聚合物的结构、分子量和分子量分布.  相似文献   

10.
Finkelmann和等人对侧链胆甾型高分子液晶的研究表明,将具有液晶功能的低分子基团,经过一个软段连接到柔性高分子主链上的梳型高分子在一定的温度下可以形成液晶态,调节侧链高分子液晶的分子结构、软段长度,可以改变其相态转变温度及微区形态。前已报导具有不同侧链结构的聚甲基丙烯酸胆甾醇酯共聚物的合成、相态转变及光学性质,本文通过对聚甲基丙烯酸胆甾醇乙烯酯共聚物(PMACE)的液晶态及结晶态的微细结构及相态转变与胆甾侧链含量关系的研究,给出了液晶态的形成条件及结构特征。  相似文献   

11.
Several new random and block copoly(imide siloxane)s have been prepared by the solution polycondensation of commercially available 4,4′-oxydianiline (ODA) and amino-propyl terminated polydimethylsiloxane (APPS) with 4,4′-(hexafluoro-isopropylidene)diphthalic anhydride (6FDA). The siloxane loading was kept to 10, 20, 30, 40 and 50 wt% in the copolymers. The random copolymers were prepared by a one pot solution imidization technique, and two pot solution imidization technique was adopted for the synthesis of the block copolymers. The diamine ODA and the dianhydride 6FDA composed the hard block segment, while APPS and 6FDA composed the soft block segment. The hard block length was kept constant while the soft block lengths were varied by varying the siloxane loading. Accordingly, block copoly(imide siloxane)s were prepared on increasing the soft block lengths (DP) from 3 to 6, 10, 18 and 36 for fixed hard block length of 22. The resulting polymers have been well characterized by IR, NMR and GPC techniques. Thermal and mechanical properties of the random and block copolymers were compared with the already reported homopolyimide without siloxane moiety.  相似文献   

12.
It was found that 20 : 5 and 40 : 10 siloxane block copolymers of the general formula { (CH3)2SiO}m {[C6H5SiO1.5]a [C6H5SiO · (OH)]1 ? a}n are structurally different: the 20 : 5 siloxane block copolymers consisted of 8–10 pairs of blocks, whereas the 40 : 10 siloxane block copolymers consisted of 1–2 pairs of blocks. The diffraction patterns of the initial 20 : 5 siloxane block copolymers were characterized by two reflections with 2θ maximums at 7.7° and 12.2°, whereas the diffraction patterns of the initial 40 : 10 siloxane block copolymers were characterized by a reflection with a 2θ maximum of ~8.3°. After irradiation to a dose higher than the dose of gelation (~100 kGy), two reflections with maximums at ~7.6° and 12.5° appeared in the diffraction pattern of 40 : 10 siloxane block copolymers. This suggests a structural rearrangement and offers possibilities for the radiation crosslinking and regulation of the supramolecular structure of block copolymers.  相似文献   

13.
New strategies for the synthesis of perfectly alternating segmented polyimide-polydimethyl siloxane copolymers were developed by utilizing a transimidization method. Imide oligomers endcapped with 2-aminopyrimidine were reacted with aminopropyl terminated (dimethyl siloxane) oligomers to afford perfectly alternating segmented imide siloxane copolymers. The polymerization was conducted in solvents such as chlorobenzene and chlorofrom. High molecular weight, fully imidized perfectly alternating segmented imide siloxane copolymers were obtained within 2 h at temperatures of 60-110°C. The mechanism of the reaction was further elucidated via model compounds and NMR characterization. The block copolymers exhibited two Tgs due to the microphase separation of the polyimide and polysiloxane phases. The Tg of the polyimide phase was a function of the length of the polyimide block. However, partial phase mixing was also evident from the DSC results on the imide siloxane copolymers prepared with low molecular weight polyimide segments. Thermooxidative stability and tensile properties of the perfectly alternating segmented imide siloxane copolymers were found to be principally dependent on the amount of poly (dimethyl siloxane) incorporated in the copolymer and did not correlate with the poly (dimethyl siloxane) or polyimide block lengths. The stress-strain behavior of both solvent cast films or molded films is also reported. © 1994 John Wiley & Sons, Inc.  相似文献   

14.
X-ray photoelectron spectroscopy was used to study relationships between the surface and bulk composition in block copolymers and blends of poly(dimethyl-siloxane), poly(bisphenol A sulfone) and poly(bisphenol A carbonate). In all cases the polymer surfaces were highly enriched in siloxane. At a fixed siloxane concentration in the bulk the highest enrichment was observed in the blends of homopolymers and the lowest in the copolymers. It was found that the addition of small quantities of a siloxane-rich copolymer to another copolymer having a lower siloxane content may reduce the surface siloxane concentration of the latter. This unusual surface behavior was explained by the formation of an over-layer in which the macromolecules of the siloxane-rich copolymer are oriented nearly parallel to the sample surface.  相似文献   

15.
Surface and adhesion properties of poly(imide-siloxane) block copolymers   总被引:1,自引:0,他引:1  
Poly(imide-siloxane) (PIS) block copolymers were studied with respect to their structure surface and adhesive properties relationship. The study of the morphology of PIS copolymers characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Atomic Force Microscopy (AFM) shows a growth of the surface roughness by increase of the content of siloxane. With an increase of siloxane content Attenuated Total Reflection-Fourier Transform Infra Red (ATR-FTIR) spectroscopy detected a growth of the absorption bands near 1100 cm−1 characteristic for siloxane group, and a decrease at 1700-1800 cm−1 corresponding to carbonyl groups of polyimide moieties. The X-ray Photoelectron Spectroscopy (XPS) and Time-of-Flight-Secondary Ion Mass Spectroscopy (TOF-SIMS) analysis showed an excessive increase of Si on surface of the copolymer. The relatively small amount of siloxane in PIS block copolymer, 10-20 wt.%, increased significantly the contact angle of water due to the surface hydrophobization of the copolymer and the significant decrease of the surface energy of the PIS copolymer has been observed. The polar component of surface energy shows an intense decrease, whereas its dispersive component increases. The increase of the surface hydrophobicity reduced the peel as well as shear strengths of epoxy adhesive joints. The relationship between peel strength of adhesive joint to epoxy and polar fraction of PIS copolymer can be described by exponential decay dependence.  相似文献   

16.
The synthesis of a new liquid crystalline block copolymer consisting of a polystyrene block and a side-chain liquid crystalline siloxane block is reported. The synthetic approach described is based on the anionic polymerization of styrene and cyclic trimethyltrivinyltrisiloxane monomers, followed by functionalization of the siloxane block with side chain mesogens. The siloxane block has a Tg well below 25°C and is designed to exhibit a chiral smectic C* phase at room temperature. These block copolymers are the first side-chain liquid crystalline block copolymers which contain both a high Tg glassy block and a low Tg liquid crystalline block.  相似文献   

17.
Statistical and block all‐siloxane copolymers containing quaternary ammonium salt (QAS) groups with biocidal activity as lateral substituents were synthesized as models for the study of the effect of the arrangement of the QAS groups in the copolymer chain on their antimicrobial activity. The bioactive siloxane unit was [3‐n‐octyldimethylammoniopropyl]methylsiloxane, and the neutral unit was dimethylsiloxane. The copolymers also contained siloxane units with unreacted precursor 3‐chloropropyl or 3‐bromopropyl groups. A small number of units containing highly hydrophilic 3‐(3‐hydroxypropyl‐dimethylammonio)propyl groups were introduced to increase the solubility of the copolymers in water. The bioactive and bioneutral units were arranged in the polymer chain either in blocks or in statistical order. The block copolymers differed in the number and length of segments. The copolymers were obtained by the quaternization of tertiary amines by chloropropyl or bromopropyl groups attached to polysiloxane chains. The arrangement of the bioactive groups was controlled by the arrangement of the halogenopropyl groups in the bioactive copolymer precursor. All model siloxane copolymers showed high bactericidal activity in a water solution toward the gram‐negative bacteria Escherichia coli and the gram‐positive bacteria Staphylococcus aureus. However, no essential differences in the activities of the copolymers with block and statistical arrangements of units were detected. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2939–2948, 2003  相似文献   

18.
The effects of spontaneous ordering of molecular chains of poly(siloxane imide) block copolymers in the surface layers of thin films on glass and gold supports have been studied by the oblique polarized beam and photoelasticity methods. The effective thermodynamic rigidity of molecular chains of the block copolymers (the statistical segment length) has been found to be A = 10.4 × 10?7 cm. The orientational ordering of molecular chains in poly(siloxane imide) surface layers is characterized by small values of the orientational order parameter (S 0 ~ 0.007). This finding is explained by the microphase separation of the block copolymers. The evaporated gold layer contributes to the effect of surface birefringence owing to formation of the ordered system composed of islets—clusters of gold atoms.  相似文献   

19.
The synthesis of silicone–vinyl block copolymers has been studied by the use of poly(azo-containing siloxaneamide)s (abbreviated as PASAs), i.e., polysiloxane (azobiscyanopentanamide)s as macroazoinitiators. PASAs with number-average molecular weight of 12000–31000 and with siloxane chain lengths of 250–9800 were prepared by the condensation of azobiscyanopentanoyl chloride and α,ω-bis(3-aminopropyldimethyl)polysiloxanes in equimolar feeds. Several kinds of silicone–vinyl block copolymers were synthesized by radical polymerization of vinyl monomers such as methyl methacrylate, styrene, and vinyl acetate, in the presence of PASA in homogeneous media. The block copolymers with siloxane contents up to 30 mol % were then characterized on the basis of infrared absorption, proton NMR spectra, and gel permeation chromatography.  相似文献   

20.
Block copolymers consisting exclusively of a silicon–oxygen backbone are synthesized by sequential anionic ring‐opening polymerization of different cyclic siloxane monomers. After formation of a poly(dimethylsiloxane) (PDMS) block by butyllithium‐initiated polymerization of D3, a functional second block is generated by subsequent addition of tetramethyl tetravinyl cyclotetrasiloxane (D4V), resulting in diblock copolymers comprised a simple PDMS block and a functional poly(methylvinylsiloxane) (PMVS) block. Polymers of varying block length ratios were obtained and characterized. The vinyl groups of the second block can be easily modified with a variety of side chains using hydrosilylation chemistry to attach compounds with Si—H bond. Conversion of the hydrosilylation used for polymer modification was investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号