首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabolic response of normal rat brain to photodynamic therapy (PDT) was studied over a 1 week interval using in vivo 31P-NMR spectroscopy. Rats injected with 12.5 mg/kg Photofrin II were submitted to brain photoactivation 48 h after drug administration with either 140 or 70 J/cm2 light (630 +/- 1 nm) from an Argon dye laser. Control studies, animals not given drug or light, animals submitted only to brain illumination without drug, and animals given drug but no light, were also performed. The data revealed a transient metabolic degradation; a decrease in the ratio of beta-nucleotriphosphate to inorganic phosphate (P less than 0.001) at 24 h after PDT treatment was followed by a return to pretreatment spectral values. Brain tissue alkalosis was also noted, with significant (P less than 0.05) differences in brain tissue pH detected at 72 h post treatment between 70 J/cm2 PDT vs control studies and at 1 week post treatment between 140 J/cm2 vs 70 J/cm2, 140 J/cm2 vs no light-no drug and 140 J/cm2 vs drug only. The data suggest that there is no difinitive metabolic marker from 31P-NMR spectroscopy that can identify necrotic brain tissue caused by PDT. Phosphorus-31 NMR data are also presented which suggest that PDT damage to brain is not solely the result of microvascular occlusion causing ischemic necrosis.  相似文献   

2.
Abstract— Experimental mouse mammary tumor cells (EMT-6) were subjected to PDT (30 u-g/mt DHE,620–640 nm at 3.94 mW/cnr) and hyperthermia (45.2°C, Haake FK2 waterbath) for varying lengths of time and sequences. The results show that the two modalities interact in a manner which is more cytotoxic than the sum of the individual treatments, and the sequence of administration is a determining factor in the degree of interaction. The greatest potentiation of PDT is seen when hyperthermia is administered immediately after PDT. Introducing a time interval at 37°C, between treatments, leads to a rapid loss of interaction. Analysis of dose-response curves reveals a return of the shoulder and an increase in the D., after various incubation periods at 37°C. These data suggest that the cells accumulate and demonstrate recovery from sub-lethal damage and also develop a tolerance to a second challenge. The appearance of stress proteins was also detected after PDT treatments, which may account for some of the phenomena observed.  相似文献   

3.
Irradiation of B16 pigmented melanoma subcutaneously transplanted in C57 mice with a single 650 mj pulse (10 ns) of 1064 nm light from a Q-switched Nd: YAG laser caused instantaneous bleaching of the pigmented tissue. Visual and histological examination of the resulting gray-colored tumor revealed the breakdown of melanosomes with no detectable alteration of the normal and tumor-overlying skin. Histological examination of the irradiated tumor showed some degree of vascular damage; the depth of the photodamage was not affected by the successive delivery of three consecutive light pulses. The bleached tumor grew at a modestly slower rate but the high-peak-power (HPP) laser treatment did not affect the tumor concentration of a photodynamic sensitizer Si(IV)-naphthalocyanine (isoBO-SiNc) intravenously injected 24 h before Nd : YAG irradiation. Treatment of the B16 pigmented melanoma by photodynamic therapy (PDT: 1 mg/kg isoBO-SiNc, 300 mW/cm2, 520 J/cm2) from a 774 nm diode laser immediately after the 1064 nm irradiation resulted in a 16 day delay of tumor regrowth, which was markedly longer than the delay (ca 6 days) obtained after PDT under identical conditions without the preirradia-tion. Thus, pretreatment of pigmented tumors with HPP 1064 nm light appears to enhance their susceptibility to conventional PDT. The tumor response was further enhanced by repeating the combined HPP/PDT treatment at an interval of 10 days (regrowth delay: 27 days), as well as by applying hyperthermia immediately after HPP/PDT (regrowth delay: ca 34 days).  相似文献   

4.
The tumor vascular-disrupting agent (VDA) vadimezan (5,6-dimethylxanthenone-4-acetic acid, DMXAA) has been shown to potentiate the antitumor activity of photodynamic therapy (PDT) using systemically administered photosensitizers. Here, we characterized the response of subcutaneous syngeneic Colon26 murine colon adenocarcinoma tumors to PDT using the locally applied photosensitizer precursor aminolevulinic acid (ALA) in combination with a topical formulation of vadimezan. Diffuse correlation spectroscopy (DCS), a noninvasive method for monitoring blood flow, was utilized to determine tumor vascular response to treatment. In addition, correlative CD31-immunohistochemistry to visualize endothelial damage, ELISA to measure induction of tumor necrosis factor-alpha (TNF-α) and tumor weight measurements were also examined in separate animals. In our previous work, DCS revealed a selective decrease in tumor blood flow over time following topical vadimezan. ALA-PDT treatment also induced a decrease in tumor blood flow. The onset of blood flow reduction was rapid in tumors treated with both ALA-PDT and vadimezan. CD31-immunostaining of tumor sections confirmed vascular damage following topical application of vadimezan. Tumor weight measurements revealed enhanced tumor growth inhibition with combination treatment compared with ALA-PDT or vadimezan treatment alone. In conclusion, vadimezan as a topical agent enhances treatment efficacy when combined with ALA-PDT. This combination could be useful in clinical applications.  相似文献   

5.
Abstract Very little is known about the applicability of the metabolic and biochemical events observed in cell culture systems to in vivo tumor shrinkage following photodynamic therapy (PDT). The purpose of this study was to assess whether PDT induces apoptosis during tumor ablation in vivo . We treated radiation-induced fibrosarcoma (RIF-1) tumors grown in C3H/HeN mice with PDT employing three photosensitizers, Photofrin-II, chloroaluminum phthalocyanine tetrasulfonate, or Pc IV (a promising phthalocyanine developed in this laboratory). Each photosensitizer was injected intraperitoneally and 24 h later the tumors were irradiated with an appropriate wavelength of red light using an argon-pumped dye laser. During the course of tumor shrinkage, the tumors were removed at 1, 2, 4 and 10 h post-PDT for DNA fragmentation, histopathologic, and electron microscopic studies. Markers of apoptosis, viz . the ladder of nucleosome-size DNA fragments, increased apoptotic bodies, and condensation of chromatin material around the periphery of the nucleus, were evident in tumor tissue even 1 h post-PDT; the extent of these changes increased during the later stages of tumor ablation. No changes were observed in tumors given photosensitizer alone or irradiation alone. Our data suggest that the damage produced by in vivo PDT may activate endonucleolysis and chromatin condensation, and that apoptosis is an early event in tumor shrinkage following PDT.  相似文献   

6.
Antivascular tumor eradication by hypericin-mediated photodynamic therapy   总被引:4,自引:0,他引:4  
Photodynamic therapy (PDT) with hypericin has been shown to inhibit tumor growth in different tumor models, and tumor vascular damage was suggested to be mainly responsible for the antitumoral effect. Here, we demonstrate tumor vascular damage and its consequence on local tumor control after hypericin-mediated PDT by using both short and long drug-light intervals. Radiation-induced fibrosarcoma-1 tumors were exposed to laser light at either 0.5 or 6 h after a 5 mg/kg dose of hypericin. Tumor perfusion was monitored by fluorescein dye-exclusion assay and by Hoechst 33342 staining of functional blood vessels. Significant reduction in tumor perfusion was found immediately after both PDT treatments. A complete arrest of vascular perfusion was detected by 15 h after the 0.5 h-interval PDT, whereas well-perfused areas could still be found at this time in tumors after the 6 h-interval PDT. A histological study confirmed that primary vascular damage was involved in both PDT treatments. Tumor cells appeared intact shortly after light treatment, degenerated at later hours and became extensively pycnotic at 24 h after the 0.5 h-interval PDT. PDT under this condition led to complete tumor cure. In contrast, significant numbers of viable tumor cells, especially at the tumor periphery, were found histologically at 24 h after the 6 h-interval PDT. No tumor cure was obtained when PDT was performed at this time. Our results strongly suggest that targeting the tumor vasculature by applying short drug-light interval PDT with hypericin might be a promising way to eradicate solid tumors.  相似文献   

7.
The effects of Photofrin-mediated photodynamic therapy (PDT) on the in vitro cell survival and in vivo tumor growth of murine radiation-induced fibrosarcoma (RIF) cell tumors have been examined following in vivo PDT treatment of tumors. The response to in vivo PDT is examined in tumors derived from RIF-1 mouse fibrosarcoma cells and in tumors derived from RIF-8A cells, which show in vitro resistance to PDT. A significant reduction in tumor volume is observed over the first three days following in vivo PDT treatment of either 5 or 10 mg/ kg. The reduction in tumor volume is greater for a 10 compared to a 5 mg/ml dose and occurs to a similar extent for both RIF-1 and RIF-8A tumors. The re-growth is significantly delayed for RIF-1 compared to RIF-8A tumors, indicating a greater response for RIF-1 tumors compared to RIF-8A tumors following PDT. A reduced response of the RIF-8A compared to the RIF-1 tumor cells is also observed in the clonogenic survival of cells from tumors that were excised and explanted in vitro immediately following in vivo PDT treatment. These data indicate that the intrinsic cell sensitivity to PDT is an important component in the mechanism that leads to tumor response following in vivo photodynamic therapy.  相似文献   

8.
Abstract— The effects of aspirin (acetylsalicylic acid: ASA) on vessel behavior and tumor response were measured during and after photodynamic therapy (PDT). Changes to vessel constriction, macromolecular leakage, tumor interstitial pressure, and tumor response were examined. Animals were randomly placed into treatment groups and injected with 0–25 mg/kg Photofrin® and given 0 or 135 J/cm2 light treatment. The light treatment was standardized to 75 mW/cm2 at 630 nm over a 30 min treatment interval (135 J/cm2). The treatment groups were further subdivided to receive Photofrin® alone or Photofrin® plus 100 mg/kg ASA. A cremaster muscle model in Sprague-Dawley rats was used to directly observe microvascular response and changes in vessel permeability to macromolecules. A tumor interstitial pressure model was designed to measure pressure changes in a chondrosarcoma tumor over time. This model indirectly measures macromolecular leakage, among other factors, in the tumor tissue. Groups of 10–20 rats were implanted subcutaneously with chondrosarcoma and were subjected to PDT to assess tumor response to the various treatments. Statistically significant differences in vessel leakage and changes in interstitial pressure were observed between animals given ASA plus PDT as compared to animals given PDT alone. The administration of ASA significantly inhibited venule leakage of albumin and reduced increases in interstitial pressure after treatment. The use of ASA had no effect on vessel constriction or tumor response after PDT. These findings suggest that the increases in vessel permeability observed during and after PDT, using Photofrin®, do not significantly contribute to tumor response.  相似文献   

9.
The interaction of photodynamic therapy (PDT) with 5-aminolevulinic acid (ALA) and hyperthermia is not well understood. In the present study, significant enhancement of tumor damage was observed after simultaneous application of ALA-PDT and IR-induced hyperthermia using a broad-band incoherent light source. One hour after systemic administration of ALA at a dose of 200 mg/kg, subcutaneously transplanted C26 colon carcinoma tumors were irradiated with two bands of the VersaLight system, red (R, 580-720 nm) and red plus IR (R + IR, 580-720 nm and 1250-1600 nm). Photoirradiation using the R + IR band at different fluence rates and exposures caused mild heating of the tumor to 39-43 degrees C at a 3 mm depth. Electron microscopy after ALA + R, ALA + R + IR and R + IR treatments showed early mitochondrial swelling that was more pronounced in the ALA + R + IR group. Tumor necrosis assessment, using histology and vital staining, revealed an enhancement of tumor necrosis depth in the ALA + R + IR group compared to ALA + R and R + IR. The results showed that subhyperthermic heating to 39-39.5 degrees C in the ALA + R + IR group decreased the threshold light dose required for 100% tumor necrosis from 210 J/cm2 (observed in the ALA + R group) to 140 J/cm2. A tumor growth delay test, based on tumor volume measurement, also revealed significant enhancement of antitumor effect after application of ALA + R + IR compared to ALA + R.  相似文献   

10.
Abstract— Photodynamic therapy (PDT) has been proven as a method of tumor eradication and is currently being used clinically to treat a wide variety of malignancies. Although it is understood that the interaction of light and sensitizer results in the production of potentially damaging oxygen species, the mechanism by which tumors are destroyed has yet to be defined fully. Using a new porphyrin sensitizer, benzoporphyrin derivative(BPD), we examined protein expression in murine tumor cells following treatment as an indication of molecular changes to target tissue concurrent with PDT-mediated damage. In order to assess the relevance of the results obtained using an in vitro PDT model, metabolic labeling of proteins synthesized subsequent to PDT was performed both in tumor cells grown and treated in tissue culture dishes and in cells explanted from PDT-treated solid tumors. We observed that the oxidative stress associated with PDT-resulted in the induction of a number or proteins corresponding to a set of heat-shock or stress proteins, and that the pattern of expression was similar when tumor cells were treated in vitro and in vivo . These results support the use of in vitro models in the dissection of the molecular erects of PDT and provide the foundation for future experiments that will examine the role of the immune system in tumor eradication by PDT.  相似文献   

11.
CLINICAL LASER PHOTODYNAMIC THERAPY IN THE TREATMENT OF BLADDER CARCINOMA   总被引:1,自引:0,他引:1  
Abstract The treatment of bladder carcinoma using dihematoporphyrin ether (DHE) and laser photodynamic therapy (PDT) is described herein. Patients selected for this study have cytology- and biopsy-proven transitional cell carcinoma, no histologic evidence of muscle invasion, and negative excretory urograms. Sixteen patients have been treated, with follow-up from 6 to 36 months. Eleven have had a complete response, and 3 a partial response in that they required re-treatment for recurrence. Two of these patients have not recurred at this time. One of the patients who recurred had tumor extension into the prostatic urethra and has been successfully re-treated (disease-free at 6 months). There was one treatment failure and 1 patient lost to follow-up. Photosensitivity for up to 4 weeks is a known side-effect, but unexpected morbidity included a transient but significant increase in urinary frequency, urgency, and occasionally hematuria which spontaneously resolved within 3-4 weeks. Careful placement of the fiberoptic tip in the centre of the bladder, bladder distension during treatment with saline rather than water, the instillation of the minimum volume required to “smooth out” the mucosa for complete bladder photoradiation, and delivered energy of 25 J cm’or less may have prevented the more severe complications (i.e. bladder shrinkage) reported by Dougherty and Nseyo (personal communication). We also feel that there is some early evidence that a heightened immune response (similar to intravesical BCG) may potentially play some role in explaining the efficacy of PDT in long disease-free intervals, although this is just a histologic observation at present. It appears the PDT offers another practical treatment modality for non-invasive transitional cell carcinoma in patients refractory to standard surgical and chemotherapeutic regimens, and has been addressed by numerous other investigators such as Benson (1985) and Hisazumi (1983). We are presently recommending to our patients in these categories to undergo a course of PDT prior to relinquishing to cystectomy.  相似文献   

12.
Abstract The techniques of photodynamic therapy (PDT) and the indications for its use in the treatment of intraocular tumors have evolved during the years in which it has been assessed in patients at our institution. It is now clear that transcorneal PDT delivered at a subthermal dose-rate to the surface of a pigmented lesion such as choroidal melanoma has little effect. In the absence of pigment, however, as in the case of retinoblastoma or amelanotic melanoma of the iris or choroid, the tumor kill attributed to PDT alone is significant. Data from animal tumor models in our institution and from patient studies elsewhere suggest that the addition of heat with the light delivery will predictably improve the outcome of the treatment of pigmented lesions. Ocular PDT delivered in conjunction with heat will be useful clinically as an adjunct to scleral plaque therapy by reducing the height of a lesion and concurrently the dose of radiation necessary at the base of the tumor for sterilization. Since the clinical tumoricidal effect of PDT is now known to be due at least in part to vascular damage, trans-scleral application of light to the base of melanomas and occlusion of its blood supply holds significant promise of efficacy with continued improvement of the light delivery system. Finally, a transpupillary approach to occlusion of the choroidal vascular supply to a melanoma by surrounding the tumor with photodynamic lesions may provide the best approach for ocular PDT as a primary therapy.  相似文献   

13.
Abstract The efficiency of different sensitizers for photodynamic therapy (PDT) was tested using a model system with a C3H mammary carcinoma growing subcutaneously on the dorsal side of mouse feet. Growth curves were constructed from which growth delay and doubling time in the regrowth phase were calculated. As PDT induced oedema in the mouse foot, this model system also allowed assessment of normal tissue response.
The following sensitizers were tested: hematoporphyrin derivative (HpD), Photofrin II (PII), tetraphenylporphinetetrasulfonate (TPPS4), acridine orange (AO), phthalocyanine tetrasulfonate (PCTS), Al- and Zn-phthalocyanine tetrasulfonate (A1PCTS and ZnPCTS). For tumor control, the following sensitizer efficiencies were found: PII > HpD > AIPCTS > TPPS4 >>> ZnPCTS, PCTS, AO. With regard to sensitizing normal-tissue damage: PII > AIPCTS, TPPS4 > HpD, ZnPCTS, PCTS. The results suggest that AIPCTS should be further evaluated for use in PDT.  相似文献   

14.
TUMOR DESTRUCTION IN PHOTODYNAMIC THERAPY   总被引:2,自引:0,他引:2  
Abstract The effects of photodynamic therapy (PDT) on the tumor microvasculature in the first few hours after treatment was studied at the light microscope (LM) and electron microscope (EM) levels in DBA/2Ha mice bearing SMT-F tumors. Animals received intraperitoneal injections of 10 mg kg of Photofrin II and 24 h later tumors were treated with 100 J cm−2 of light (630 nm). Animals were sacrificed and their tumors removed at time 0, 30 min, 1, 2, 4, 8, 16 and 24 h after treatment. The results indicate that the effects of PDT are initially direct destruction of the microfibrils in the subendothelial zone of the tumor capillaries with subsequent tumor cell death secondary to hemorrhage and vascular collapse.  相似文献   

15.
We examined effects of fluence rate on the photobleaching of the photosensitizer Pc 4 during photodynamic therapy (PDT) and the relationship between photobleaching and tumor response to PDT. BALB/c mice with intradermal EMT6 tumors were given 0.03 mg kg?1 Pc 4 by intratumor injection and irradiated at 667 nm with an irradiance of 50 or 150 mW cm?2 to a fluence of 100 J cm?2. While no cures were attained, significant tumor growth delay was demonstrated at both irradiances compared with drug‐only controls. There was no significant difference in tumor responses to these two irradiances (P = 0.857). Fluorescence spectroscopy was used to monitor the bleaching of Pc 4 during irradiation, with more rapid bleaching with respect to fluence shown at the higher irradiance. No significant correlation was found between fluorescence photobleaching and tumor regrowth for the data interpreted as a whole. Within each treatment group, weak associations between photobleaching and outcome were observed. In the 50 mW cm?2 group, enhanced photobleaching was associated with prolonged growth delay (P = 0.188), while at 150 mW cm?2 this trend was reversed (P = 0.308). Thus, it appears that Pc 4 photobleaching is not a strong predictor of individual tumor response to Pc 4‐PDT under these treatment conditions.  相似文献   

16.
Abstract To determine if photodynamic therapy (PDT) adds anything to conventional external beam radiotherapy (XRT) in patients with obstructive endobronchial tumors, 11 patients with inoperable non-small cell bronchogenic carcinoma obstructing a central airway were randomized into either XRT alone or PDT followed by XRT. The most proximal site of obstruction was in the trachea (2), carina (3) or a main-stem bronchus (6). The tumors involved more than one site in all patients. The histology was squamous cell in 9 and large cell carcinoma in 2. The age. location of tumor, degree of endobronchial obstruction and karnofsky rating were similar between the two groups. The radiation dose was 3000 cGy in 10 fractions over two weeks using a parallel pair technique. The patients were reassessed 4 and 12 weeks after completion of XRT and then quarterly thereafter. Response to treatment was assessed by changes in symptom scores, quality of life scores, bronchoscopy, quantitative ventilation perfusion lung scan, spirometric measurements and arterial blood gas sampling. All patients improved symptomatically with objective evidence of regression of their tumor at 4 weeks. Four out of five patients in the XRT group who had been followed for 12 weeks or more had progression of their tumor at 12 weeks. Three of them had died 155, 256 and 261 days respectively after treatment. Only i patients in the PDT + XRT group who had been followed for 12 weeks or more relapsed at 12 weeks and subsequently died 201 days after treatment. Two patients are still in complete remission 183 days and 310 days after treatment. Our preliminary results suggest that 3000 cGy radiation therapy alone offers only transient palliation for patients with obstructive endobronchial tumor. The addition of PDT prior to XRT provides significantly better and longer lasting local control. The combined treatment may also improve survival. It is possible that a therapeutic dose–6000 cGy radiation therapy may offer better local control than 3000 cGy.  相似文献   

17.
Effective photodynamic therapy (PDT) depends on the optimization of factors such as drug dose, drug-light interval, fluence rate and total light dose (or fluence). In addition sufficient oxygen has to be present for the photochemical reaction to occur. Oxygen deficits may arise during PDT if the photochemical reaction consumes oxygen more rapidly than it can be replenished, and this could limit the efficacy of PDT. In this study we investigated the influence of the drug-light interval, illumination-fluence rate and total fluence on PDT efficacy for the photosensitizer meta-tetrahydroxyphenylchlorin (mTHPC). The effect of increasing the oxygenation status of tumors during PDT was also investigated. PDT response was assessed from tumor-growth delay and from cures for human malignant mesothelioma xenografts grown in nude mice. Tumor-bearing mice were injected intravenously with 0.15 or 0.3 mg.kg-1 mTHPC, and after intervals of 24-120 h, the subcutaneous tumors were illuminated with laser light (652 nm) at fluence rates of 20, 100 or 200 mW.cm-2. Tumor response was strongly dependent on the drug-light interval. Illumination at 24 h after photosensitization was always significantly more effective than illumination at 72 or 120 h. For a drug-light interval of 24 h the tumor response increased with total fluence, but for longer drug-light intervals even high total fluences failed to produce a significant delay in tumor regrowth. No fluence-rate dependence of PDT response was demonstrated in these studies. Nicotinamide injection and carbogen breathing significantly increased tumor oxygenation and increased the tumor response for PDT schedules with illumination at 24 h after photosensitizer injection.  相似文献   

18.
Photodynamic therapy (PDT) of cancer combines irradiation of tumors with visible light following selective uptake of the photosensitizer by the tumor cells. PhotofrinR-II (Pf-II) is the only photosensitizer which is in clinical use in PDT, whereas chloroaluminum phthalocyanine tetrasulfonate (AlPcTS) has also shown promise in preclinical studies. In most such studies, the effectiveness of the photosensitizers has been assessed in implanted tumor model systems rather than in model systems where tumors are allowed to grow in their own connective tissue matrix. In this study the pharmacokinetics, tumor ablation capability and cutaneous photosensitization response of AlPcTS have been assessed in mice bearing chemically- and ultraviolet B radiation (UVB)-induced benign skin papillomas. When tumor-bearing animals were injected intraperitoneally with AlPcTS (5 mg/kg body wt), maximum tumor:normal skin ratio of 2.4 was observed at 48 h, at which time the mice were irradiated within the absorption spectrum of the photosensitizer. In tumor ablation studies with SENCAR mice bearing chemically-induced skin tumors, AlPcTS resulted in greater than 80% ablation in tumor volume at 20 days post-irradiation. In cutaneous photosensitization response, AlPcTS produced only transient effects (no effect after 24 h) in SENCAR mice. Pharmacokinetics data, tumor ablation effects and cutaneous photosensitization response of AlPcTS were comparable in SKH-1 hairless mice bearing UVB-induced skin tumors. Our data indicate that AlPcTS produces significant photodynamic effects towards the ablation of murine skin tumors, and that it does not produce prolonged cutaneous photosensitivity.  相似文献   

19.
Abstract This paper reports the retrospective comparison of a PDT dosimetry model with the current results of an ongoing clinical trial on photodynamic therapy (PDT) for head and neck squamous cell carcinoma (HNSCC). The model is based on the assumption that tumor eradication requires a minimum absorption of radiant energy by the tumor-localized porphyrins. The diffusion approximation was employed to calculate the incident light dose required to attain the minimum absorbed energy density at tumor boundaries most distant from the light source. Dosimetry tables for HNSCC were calculated with estimated tissue parameters, giving the PDT light dose for front surface exposure (FS) and illumination by interstitial cylindrical diffuser fibers (CI) in terms of the tumor dimensions. The model includes a correction for the photobleaching of the localized photosensitizer by the therapeutic light. The PDT trial was carried out on nine patients with previously untreated or recurrent early stage tumors and one patient with a recurrent advanced stage tumor. A complete response was obtained in 83% (10/12) of the sites treated. The calculated doses for FS and CI exposures vary from comparable with to three-fold lower than the actual doses for each complete response tumor site.  相似文献   

20.
On the combination of photodynamic therapy with ionizing radiation   总被引:3,自引:0,他引:3  
Ehrlich ascites carcinoma growth and cell damage have been examined after photodynamic therapy (PDT), radiotherapy (RT) and combined treatment. Haematoporphyrin dimethyl ether (HPde) is used as a photosensitizer for PDT and tested as a radiosensitizer for RT. For PDT a non-coherent light source (370 < lambda < 680 nm) equipped with filters is used. gamma-Irradiation consists of 60Co irradiation at a dose of 2 Gy. Both PDT and RT induce a significant delay and inhibition in tumour growth (33 and 38%, respectively). Nevertheless cell damage after these treatments is different: after PDT the cell membrane integrity is damaged and no serious chromosomal aberrations are observed; whereas after gamma-irradiation there is no cell membrane integrity damage, but more significant DNA injuries are observed. It seems evident that HPde is able to act as a photosensitizer as well as a radiosensitizer. Combining PDT and RT produces an additive effect, not dependent on the sequence in which the two treatments are given, when a 1 h time window is used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号