首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(M',Ti)5Sb8 was prepared from the melt by arc-melting suitable mixtures of Ti, TiSb2, and M'Sb2, respectively. This phase exists at least with M' = Zr, Hf, Nb, and Mo. A significant phase range for Zr delta Ti5 - delta Sb8 was found to be within 1.10(8) < or = delta < or = 3.9(3). All (M',Ti)5Sb8 representatives investigated occur in the same, yet hitherto unknown structure type, as determined by single-crystal analyses. E.g., the lattice dimensions of Zr delta Ti5 - delta Sb8 range from a = 654.49(3) pm, c = 2662.4(2) pm for delta = 1.10(8) to a = 671.06(6), c = 2679.7(4) pm for delta = 3.9(3) (space group I4(1)22, No. 98, Z = 4). The three chemically inequivalent metal sites are statistically occupied by different mixtures of the M atoms M' and Ti, included in a three-dimensional network of Sb atoms on 6- to 8-fold Sb coordinated positions. Sb-Sb bonds of intermediate lengths occur in addition to the predominating heteronuclear M-Sb bonds. Physical property measurements of (Zr,Ti)5Sb8 reveal these phases being metallic exhibiting specific resistances of several m omega.cm and a small Seebeck coefficient at room temperature, in agreement with the results of the electronic structure calculations on the LMTO and extended Hückel levels. The calculations indicate a possible change to semiconducting properties by heavy doping.  相似文献   

2.
The first monomeric antimony alkoxides, Sb(OC(6)H(3)Me(2))(3) (1) and Sb(OEt)(5) x NH(3) (2), have been crystallographically characterized. The former adopts a trigonal pyramidal geometry, while the latter is octahedral about antimony; hydrogen bonding between NH(3) and SbOEt groups in Sb(OEt)(5) small middle dotNH(3) creates a one-dimensional lattice arrangement. Reaction of pyridine with SbCl(5) in EtOH/hexane yields the salt [Hpy(+)](9)[Sb(2)Cl(11)(5)(-)][Cl(-)](4) (3), which has also been crystallographically characterized. Crystallographic data: 1, C(24)H(27)O(3)Sb, a = 10.9080(2), b = 11.9660(2), c = 17.7260(4) A, alpha = 109.740(1) degrees, monoclinic P2(1)/c (unique axis a), Z = 4; 2, C(10)H(28)NO(5)Sb, a = 7.7220(1), b = 19.0700(2), c = 21.6800(3) A, beta = 93.4960(7) degrees, monoclinic P2(1)/c, Z = 8; 3, C(45)H(54)Cl(15)N(9)Sb(2), a = 13.4300(2), b = 14.4180(2), c = 17.4180(3) A, alpha = 82.7650(7), beta = 77.5570(7), gamma = 70.7670(7) degrees, triclinic P1, Z = 2.  相似文献   

3.
The herewith-introduced antimonides Zr(11)Sb(18) and Zr(10.4)V(0.6)Sb(18) were prepared by high-temperature techniques; both arc-melting and solid-state reactions at 1200 degrees C starting from alpha-ZrSb(2) and the metals Zr and V in powder form are possible methods. These isostructural compounds represent an unprecedented metal:antimony ratio of 11:18 and form a new structure type. Zr(11)Sb(18) crystallizes in the tetragonal space group I(-)42d, with the lattice dimensions a = 676.94(4) pm and c = 6007.3(5) pm, while the V-containing phase forms a slightly smaller unit cell with a = 676.48(8) pm and c = 6005.6(9) pm (Z = 4). Their structures are comprised of an Sb atom substructure with several intermediate Sb-Sb bonds starting at 311 pm, which is reminiscent of that found in the series (Ti,M)(5)Sb(8) (M = Zr, Hf, Nb, Mo) published last year. Interwoven with this network is the Zr atom network, which forms a diamond-like metal atom substructure with long Zr-Zr contacts of ca. 360 pm. Band structure calculations based on the linear muffin tin orbital approach reveal these antimonides to be mainly stabilized by strong M-Sb and intermediate Sb-Sb bonds, and additionally--to the smallest extent--by M-M bonds (M = Zr, V). In agreement with the electronic structure calculations, Zr(11)Sb(18) is metallic with a small positive Seebeck coefficient.  相似文献   

4.
Tkachuk AV  Mar A 《Inorganic chemistry》2004,43(14):4400-4405
Zr(7)Sb(4) has been prepared by arc-melting of the elemental components and annealing at 1000-1150 degrees C. Its crystal structure was determined by X-ray diffraction (Pearson symbol mP44, monoclinic, space group P2(1)/c, Z = 4, a = 8.4905(6) A, b = 11.1557(8) A, c = 11.1217(8) A, beta = 111.443(2) degrees at 295 K). Zr(7)Sb(4) is isotypic to Hf(6)TiSb(4), a compound stabilized by differential fractional site occupancy. It is the first binary group-4 antimonide with this metal-to-antimony ratio, but it differs from the corresponding phosphides and arsenides M(7)Pn(4) (M = Ti, Zr, Hf; Pn = P, As), which adopt the Nb(7)P(4)-type structure. Zr(7)Sb(4) is built up from layers excised from the tetragonal W(5)Si(3)-type structure; these layers are displaced relative to each other to maximize interlayer Zr-Zr and Zr-Sb bonding, as confirmed by band structure calculations.  相似文献   

5.
Three new bis(aryl)triazene ligands, Ar-NNNH-Ar' [Ar = o-C(6)H(4)-CO(2)Me, Ar' = p-C(6)H(4)-CH(3) (2); Ar = Ar' = o-C(6)H(4)-CO(2)Me (3); Ar = o-C(6)H(4)-SMe, Ar' = p-C(6)H(4)-CH(3)) (4)], have been synthesized. The reaction of 1-4 with PdCl(2)(NCCH(3))(2) in the presence of a base afforded a series of binuclear diamagnetic palladium complexes. In these reactions, ligands 1-3 afforded the palladium(I) complexes [Pd(I)(o-MeO(2)C-C(6)H(4)-NNN-o-C(6)H(4)-CO(2)Me)](2) (5, monoclinic, space group P21/c, a = 8.6070(10) Angstrom, b = 14.3220(10) Angstrom, c = 12.7310(10) Angstrom, beta = 100.2950(10) degrees, Z = 2), [Pd(I)(o-MeO-C(6)H(4)-NNN-o-C(6)H(4)-OMe)](2) (6, triclinic, space group P, a = 6.6288(5) Angstrom, b = 10.2631(10) Angstrom, c = 11.0246(11) Angstrom, alpha = 85.579(6) degrees, beta = 80.885(6) degrees, gamma = 74.607(6) degrees, Z = 1), and [Pd(I)(o-MeO(2)C-C(6)H(4)-NNN-p-C(6)H(4)-CH(3))](2) (7, tetragonal, space group I41/a, a = 20.866(3) Angstrom, b = 20.866(3) Angstrom, c = 13.156(2) Angstrom, Z = 8). In contrast, the reaction of ligand 4 with PdCl(2)(NCCH(3))(2) resulted in the formation of a palladium(II) dimer, [Pd(II)(o-MeS-C(6)H(4)-NNN-p-C(6)H(4)-CH(3))Cl](2) (8, orthorhombic, space group P2(1)2(1)2, a = 10.4058(5) Angstrom, b = 16.2488(8) Angstrom, c = 9.9500(5) Angstrom, Z = 2).  相似文献   

6.
Mg2Na2NiH6 was synthesized by reacting NaH and Mg2NiH4 at 310 degrees C under hydrogen pressure. The novel structure type was refined from neutron-diffraction data in the orthorhombic space group Pnma (No. 62), with unit cell dimensions of a = 11.428(2), b = 8.442(2), and c = 5.4165(9) Angstrom and a unit cell volume = 523 Angstrom(3) (Z = 4). The structure can be described by (Mg2H2)(2+) layers intersected by (Na2NiH4)(2-) layers. The [NiH4](4-) complex is approximately tetrahedral, indicating formal zerovalent nickel. This is the first example of a solid-state hydride where a [NiH4](4-) complex is directly stabilized by alkali metal ions instead of the more polarizing Mg(2+) ions. A rather long nickel-hydrogen bond distance of 1.65 Angstrom indicates a weaker Ni-H bond as a result of the weaker support from the less polarizing alkali metal counterions.  相似文献   

7.
Yue Q  Yang J  Li GH  Li GD  Chen JS 《Inorganic chemistry》2006,45(11):4431-4439
Four homochiral porous lanthanide phosphonates, [Ln(H2L)3].2H2O, (H3L = (S)-HO3PCH2-NHC4H7-CO2H, Ln = Tb (1), Dy (2), Eu (3), Gd (4)), have been synthesized under hydrothermal conditions. These compounds are isostructural, and they possess a 3D supramolecular framework built up from 1D triple-strand helical chains. Each of the helical chain consists of phosphonate groups bridging adjacent Ln(III) ions. The helical chains are stacked through hydrogen bonds to form 1D tubular channels along the c axis. Moreover, helical water chains are located in the 1D channels, and after removal of these water chains, the compounds exhibit selective adsorption capacities for N2, H2O, and CH3OH molecules. Compounds 1 and 3 show strong green and red fluorescent emissions, respectively, in the solid state at room temperature. Crystal data for 1: TbP3O17N3C18H37, tetragonal (No.76), space group P4(1), a = 12.4643(3) Angstrom, b = 12.4643(3) Angstrom, c = 18.7577(5) Angstrom, V = 2914.17(13) Angstrom(3), and Z = 4. For 2: DyP3O17N3C18H37, a = 12.4486(3) Angstrom, b = 12.4486(3) Angstrom, c = 18.7626(5) Angstrom, V = 2907.60(13) Angstrom(3), and Z = 4. For 3, EuP3O17N3C18H37, a = 12.4799(3) Angstrom, b = 12.4799(3) Angstrom, c = 18.8239(5) Angstrom, V = 2931.78(13) Angstrom(3), and Z = 4. For 4: GdP3O17N3C18H37, a = 12.4877(18) Angstrom, b = 12.4877(18) Angstrom, c = 18.824(4) Angstrom, V = 2935.5(8) Angstrom(3), and Z = 4.  相似文献   

8.
The novel quaternary uranium thiophosphate K11U7(PS4)13 has been synthesized by reacting uranium metal, K2S, S, and P2S5 at 700 degrees C in an evacuated silica tube. The crystal structure was determined by single crystal X-ray diffraction techniques. K11U7(PS4)13 crystallizes in the tetragonal space group I42d (a = 32.048(2) A, c = 17.321(1) A, Z = 8). The structure contains a tunnel framework composed of eight interlocking uranium U7(PS4)13 screw helices, with alkali metal cations residing inside the framework channels. The uranium atoms are coordinated in a bi- or tricapped trigonal prismatic fashion. The screw helices are built up from uranium atoms interconnected by PS4 tetrahedral units. Magnetic susceptibility measurements indicate modified Curie-Weiss-type behavior between 300 and 70 K, with an effective magnetic moment of 2.54 microB per U atom at room temperature and C = 3.78, theta = -14.54, chi 0 = 0.01. The isostructural compound Rb11U7(PS4)13 (a = 32.1641(11) A, c = 17.7244(9) A, Z = 8) was prepared by heating a mixture of the formal composition UPS5 in eutectic LiCl/RbCl melts at 700 degrees C.  相似文献   

9.
A family of quaternary (or pseudoquaternary) antimonides Nb4Pd0.5ZSb2 (Z = Cr, Fe, Co, Ni, Si) containing up to three transition metals in an ordered arrangement has been prepared by reactions of the elements. These antimonides are isostructural, crystallizing as substitutional variants of the W5Si3-type structure (tetragonal, space group -I4/mcm, Z = 4) with unit cell parameters a = 10.4407(3) A and c = 5.0020(2) A for Nb4Pd0.5Cr0.28(3)Si0.72Sb2, a = 10.4825(6) A and c = 4.9543(3) A for Nb4Pd0.5FeSb2, a = 10.4603(5) A and c = 4.9457(3) A for Nb4Pd0.5CoSb2, a = 10.4332(7) A and c = 4.9649(3) A for Nb4Pd0.5Ni0.78(1)Sb2, and a = 10.3895(10) A and c = 4.9634(4) A for Nb4Pd0.5SiSb2. They are distinguished by the filling of interstitial Z atoms into the centers of Nb8 square antiprismatic clusters that are linked by PdSb4 tetrahedra. The Nb8 square antiprisms share opposite square faces to form one-dimensional chains along the c axis so that Z-Z bonding distances of approximately 2.5 A result. Extended Hückel band structure calculations were carried out to interpret the homo- and heteroatomic metal-metal interactions in the structure. The resistivity of one member, Nb4Pd0.5SiSb2, was measured, indicating metallic behavior.  相似文献   

10.
The first representatives of 4H (BaMnO3-type structure, P63/mmc, Z = 4) and 9R (BaMnO3-type structure, Rm, Z = 9) inverse Perovskite phases are presented. The phases are obtained within the solid solutions (Sr3-xBaxN)E with E = Bi, Sb. The crystal structures and homogeneity ranges were studied by combined X-ray and neutron diffraction as well as chemical analyses. The cubic Perovskite phase with Bi (Sb) is stable in the range of 0.00 < or = x < or = 0.90(5) (0.00 < or = x < or = 1.30(5)), the 4H variant is stable for 1.55(5) < or = x < or = 2.10(5) (1.85(5) < or = x < or = 2.45(5)), the 9R structure is stable for 2.50(2) < or = x < or = 2.55(2) (2.56(2) < or = x < or = 2.60(2)), and the 2H phase is stable for 2.75(5) < or = x < or = 3.00 (2.80(5) < or = x < or = 3.00). Ba occupies preferable sites in the hexagonal stacking of close packed layers of alkaline earth metal ions and E3-; Sr is mainly located in cubic stacked layers. The phase order upon going from cubic (Sr3N)E to 2H-type (Ba3N)E concomitant to the pronounced Sr/Ba partial order can, in general, be rationalized considering the Coulomb repulsion of nitride ions, as well as the size and charge density of the alkaline earth metal ions.  相似文献   

11.
The ternary polar intermetallic phase Mg(5.231(8))Sm(0.769(8))Sb4 has been obtained from solid-state reactions at 700-850 degrees C in sealed Ta or Nb containers when the synthetic conditions took into account its characteristic incongruent melting point. The compound crystallizes in the trigonal space group P3 (Z = 1) with a = 4.618(1) A and c = 14.902(6) A in a structure that derives from that of Mg3Sb2 (anti-La2O3 type). This composition appears to be near the lower limit of Sm content, and solutions with appreciably higher Sm contents are also stable [Mg(6-x)SmxSb4, x 相似文献   

12.
The first quaternary plutonium metal thiophosphates have been synthesized by the reactive flux method and characterized by single-crystal X-ray diffraction: K(3)Pu(PS(4))(2) (I), KPuP(2)S(7) (II), RbPuP(2)S(7) (III), and CsPuP(2)S(7) (IV). All four compounds crystallize in the monoclinic space group P2(1)/c with Z = 4. Compound I has cell parameters of a = 9.157(1) A, b = 16.866(2) A, c = 9.538(1), and beta = 90.610(3)degrees. Compound II has cell parameters of a = 9.641(1) A, b = 12.255(1) A, c = 9.015(1) A, and beta = 90.218(1)degrees. Compound III has cell parameters of a = 9.8011(6) A, b = 12.3977(7) A, c = 9.0263(5) A, and beta = 90.564(1)degrees. Compound IV has cell parameters of a = 10.1034(7) A, b = 12.5412(9) A, c = 9.0306(6) A, and beta = 91.007(1)degrees. Compound I is isostructural to a family of rare-earth metal thiophosphates and comprises bicapped trigonal prismatic PuS(8) polyhedra linked in chains through edge-sharing interactions and through thiophosphate tetrahedra. Compounds II-IV crystallize in a known structure type not related to any previously observed actinide thiophosphates and contain the (P(2)S(7))(4-) corner-shared bitetrahedral ligand as a structural building block. A summary of important bond distances and angles for these new plutonium thiophosphate materials is compared to the limited literature on plutonium solid-state compounds. Diffuse reflectance spectra confirm the Pu(III) oxidation state and Raman spectroscopy confirms the tetrahedral PS(4)(3-) building block in all structures.  相似文献   

13.
The binary Ba-Li system was reinvestigated for compositions with less than 80 at. % Li. A new compound, Ba(19)Li(44), stable up to 126 degrees C, was found and structurally characterized. According to single-crystal X-ray diffraction data, the compound crystallizes in a new structure type with a tetragonal unit cell, space group I42d, a = 16.3911(5) Angstrom, c = 32.712(1) Angstrom, Z = 4, and V = 8788.7(5) Angstrom(3). It can be described as a complicated variant of the chalcopyrite structure. Typical for Li-rich phases, Ba(19)Li(44) contains icosahedron-based polytetrahedral clusters.  相似文献   

14.
Yang M  Yu J  Di J  Li J  Chen P  Fang Q  Chen Y  Xu R 《Inorganic chemistry》2006,45(9):3588-3593
Three new open-framework transition-metal borophosphates Na5(H3O){M(II)3[B3O3(OH)]3(PO4)6}.2H2O (M(II) = Mn, Co, Ni) (denoted as MBPO-CJ25) have been synthesized under mild hydrothermal conditions. Single-crystal X-ray diffraction analyses reveal that the three compounds possess isostructural three-dimensional (3D) open frameworks with one-dimensional 12-ring channels along the [001] direction. Notably, the structure can also be viewed as composed of metal phosphate layers [M(II)(PO4)2]4- with Kagomé topology, which are further connected by [B3O7(OH)] triborates, giving rise to a 3D open framework. The guest water molecules locate in the 12-ring channels. Partial Na+ ions reside in the 10-ring side pockets within the wall of the 12-ring channels, and the other Na+ ions and protonated water molecules locate in the 6-ring windows delimited by MO6 and PO4 polyhedra to compensate for the negative charges of the anionic framework. These compounds show a high thermal stability and are stable upon calcinations at ca. 500 degrees C. Ionic conductivities, due to the motion of Na+ ions, are measured for these three compounds. They have similar activation energies of 1.13-1.25 eV and conductivities of 2.7 x 10(-7)-9.9 x 10(-7) S cm(-1) at 300 degrees C. Magnetic measurements reveal that there are very weak antiferromagnetic interactions among the metal centers of the three compounds. Crystal data: MnBPO-CJ25, hexagonal, P6(3)/m (No. 176), a = 11.9683(5) A, c = 12.1303(6) A, and Z = 2; CoBPO-CJ25, hexagonal, P6(3)/m (No. 176), a = 11.7691(15) A, c = 12.112(2) A, and Z = 2; NiBPO-CJ25, hexagonal, P6(3)/m (No. 176), a = 11.7171(5) A, c = 12.0759(7) A, and Z = 2.  相似文献   

15.
Geng L  Cheng WD  Zhang H  Lin CS  Zhang WL  Li YY  He ZZ 《Inorganic chemistry》2011,50(6):2378-2384
Two new quaternary sulfides, Ba(2)SbFeS(5) and Ba(2)BiFeS(5), were synthesized by using a conventional high-temperature solid-state reaction method in closed silica tubes at 1123 K. The two compounds both crystallize in the orthorhombic space group Pnma with a = 12.128(6) ?, b = 8.852(4) ?, c = 8.917(4) ?, and Z = 4 for Ba(2)SbFeS(5) and a = 12.121(5) ?, b = 8.913(4) ?, c = 8.837(4) ?, and Z = 4 for Ba(2)BiFeS(5). The crystal structure unit can be viewed as an infinite one-dimensional edge-shared MS(5) (M = Sb, Bi) tetragonal-pyramid chain with FeS(4) tetrahedra alternately arranged on two sides of the MS(5) polyhedral chain via edge-sharing (so the chain can also be written as (1)(∞)[MFeS(5)](4-)). Interestingly, the compounds have the structural type of a Ba(3)FeS(5) high-pressure phase considering one Ba(2+) is replaced by one Sb(3+)/Bi(3+), with Fe(4+) reduced to Fe(3+) for in order to maintain the electroneutrality of the system. As a result, the isolated iron ions in Ba(3)FeS(5) are bridged by intermediate MS polyhedra in Ba(2)MFeS(5) (M = Sb, Bi) compounds and form the (1)(∞)[MFeS(5)](4-) chain structure. This atom substitution of Ba(2+) by one Sb(3+)/Bi(3+) leads to a magnetic transition from paramagnetic Ba(3)FeS(5) to antiferromagnetic Ba(2)MFeS(5), resulting from an electron-exchange interaction of the iron ions between inter- or intrachains. Magnetic property measurements indicate that the two compounds are both antiferromagnetic materials with Ne?el temperatures of 13 and 35 K for Ba(2)SbFeS(5) and Ba(2)BiFeS(5), respectively. First-principles electronic structure calculations based on density functional theory show that the two compounds are both indirect-band semiconductors with band gaps of 0.93 and 1.22 eV for Ba(2)SbFeS(5) and Ba(2)BiFeS(5), respectively.  相似文献   

16.
From the system MF(2)/PF(5)/XeF(2)/anhydrous hydrogen fluoride (aHF), four compounds [Sr(XeF(2))(3)](PF(6))(2), [Pb(XeF(2))(3)](PF(6))(2), [Sr(3)(XeF(2))(10)](PF(6))(6), and [Pb(3)(XeF(2))(11)](PF(6))(6) were isolated and characterized by Raman spectroscopy and X-ray single-crystal diffraction. The [M(XeF(2))(3)](PF(6))(2) (M = Sr, Pb) compounds are isostructural with the previously reported [Sr(XeF(2))(3)](AsF(6))(2). The structure of [Sr(3)(XeF(2))(10)](PF(6))(6) (space group C2/c; a = 11.778(6) Angstrom, b = 12.497(6) Angstrom, c = 34.60(2) Angstrom, beta = 95.574(4) degrees, V = 5069(4) Angstrom(3), Z = 4) contains two crystallographically independent metal centers with a coordination number of 10 and rather unusual coordination spheres in the shape of tetracapped trigonal prisms. The bridging XeF(2) molecules and one bridging PF(6)- anion, which connect the metal centers, form complicated 3D structures. The structure of [Pb(3)(XeF(2))(11)](PF(6))(6) (space group C2/m; a = 13.01(3) Angstrom, b = 11.437(4) Angstrom, c = 18.487(7) Angstrom, beta = 104.374(9) degrees, V = 2665(6) Angstrom(3), Z = 2) consists of a 3D network of the general formula {[Pb(3)(XeF(2))(10)](PF(6))(6)}n and a noncoordinated XeF(2) molecule fixed in the crystal structure only by weak electrostatic interactions. This structure also contains two crystallographically independent Pb atoms. One of them possesses a unique homoleptic environment built up by eight F atoms from eight XeF(2) molecules in the shape of a cube, whereas the second Pb atom with a coordination number of 9 adopts the shape of a tricapped trigonal prism common for lead compounds. [Pb(3)(XeF(2))(11)](PF(6))(6) and [Sr(3)(XeF(2))(10)](PF(6))(6) are formed when an excess of XeF(2) is used during the process of the crystallization of [M(XeF(2))(3)](PF(6))(2) from their aHF solutions.  相似文献   

17.
Preparation and Crystal Structure of A Ni10P3 ( A : Zn, Ga, Sn, Sb) Four compounds ANi10P3 (A: Zn, Ga, Sn, Sb) were prepared by heating mixtures of the elements and investigated by means of X‐ray methods. Single crystal structure determinations of ZnNi10P3 (a = 7.665(1), c = 9.360(1) Å) and SnNi10P3 (a = 7.674(1), c = 9.621(1) Å) respectively showed, that they are isotypic and crystallize in a new structure (P3m1; Z = 3). This type is characterized by 320 and 324 cages of Ni atoms (Frank Kasper polyhedra), which are connected with each other. A atoms are located in the centres of these polyhedra and have no direct bonds to the P atoms.  相似文献   

18.
<正> C10H18N2O11NaSb, Mr = 487. 0,orthorhombic, space group Pnna,a = 7. 047(1),b= 20. 915(3),c= 11. 152(2) A ,V= 1643. 7 A3,Z = 4,Dm= 1. 97,Dc = 1. 968gcm-3,λ(MoKa) = 0. 71073A ,μ=17. 7cm-1 ,F(000) = 968,final R=0. 040 for 1256 observed reflections. The [Sb(edta)]- ion has a diad symmetry, which differs from the structure of analog [Sb(Hedta)] in [Sb(Hedta)]·2H2O phase.  相似文献   

19.
Binary SmH(3) (trigonal, a=656.7(3), c=680.1(3) pm, P$\bar 3$c1, Z=6), ternary SmMg2H7 (tetragonal, a=626.47(6), c=937.2(2) pm, P4(1)2(1)2, Z=4) and the corresponding deuterides SmD3 (a=653.9(1)m, c=676.7(2) pm) and SmMg2D7 (a=624.10(1), c=934.81(2) pm) have been prepared by hydrogenation (deuteration) of elemental samarium and the Laves phase SmMg2, respectively, and investigated by X-ray and neutron powder diffraction and SQUID and vibration magnetometry. The problem of the enormous neutron absorption of the natural isotopic mixture (natSm) is circumvented by carefully choosing the neutron wavelength (approximately 50 pm) and the use of double-walled cylindrical sample holders and a high-intensity neutron diffractometer (D4c at ILL). SmD3 crystallises with a tysonite-type structure and has three independently ordered deuterium atom sites with trigonal-planar, trigonal-pyramidal and tetrahedral metal environments and Sm--D bond lengths in the range 220(1)-258(1) pm (average: 235 pm). SmMg2D7 is a new deuteride that crystallises with an LaMg2D7-type structure. It displays four fully occupied deuterium sites having triangular and tetrahedral metal environments and Sm--D bond lengths in the range 227.6(5)-246.8(8) pm (average: 239 pm). These are the first samarium-deuterium bond lengths to be reported. Both deuterides are paramagnetic down to 2 K (SmD3: mueff=0.63(1) muB, thetap approximately -4 K; SmMg2D7: mueff=0.57(2) muB, thetap approximately -4 K). Their crystal structures and chemical and physical properties suggest mainly ionic bonding according to the limiting ionic formulae Sm3+(H-)3 and Sm3+(Mg2+)2(H-)7.  相似文献   

20.
Wu Y  Bensch W 《Inorganic chemistry》2007,46(15):6170-6177
The reactions of Ti with in situ formed polythiophosphate fluxes of A(2)S(3) (A = Rb, Cs), P(2)S(5), and S at 500 degrees C result in the formation of two new quaternary titanium thiophosphates with compositions Rb(3)Ti(3)(P(4)S(13))(PS(4))(3) (1) and Cs(2)Ti(2)(P(2)S(8))(PS(4))(2) (2). Rb(3)Ti(3)(P(4)S(13))(PS(4))(3) (1) crystallizes in the chiral hexagonal space group P6(3) (No. 173) with lattice parameters a = 18.2475(9) Angstrom, c = 6.8687(3) Angstrom, V = 1980.7(2) Angstrom(3), Z = 2. Cs(2)Ti(2)(P(2)S(8))(PS(4))(2) (2) crystallizes in the noncentrosymmetric monoclinic space group Cc (No. 9) with a = 21.9709(14) Angstrom, b = 6.9093(3) Angstrom, c = 17.1489(10) Angstrom, beta = 98.79(1) degrees, V = 2572.7(2) Angstrom(3), Z = 4. In the structure of 1 TiS(6) octahedra, three [PS(4)] tetrahedra, and the hitherto unknown [P(4)S(13)](6-) anion are joined to form two different types of helical chains. These chains are connected yielding two different helical tunnels being directed along [001]. The tunnels are occupied by the Rb+ ions. The [P(4)S(13)](6-) anion is generated by three [PS(4)] tetrahedra sharing corners with one [PS(4)] group in the center of the starlike anion. The P atoms of the three [PS(4)] tetrahedra attached to the central [PS(4)] group define an equilateral triangle. The [P(4)S(13)](6-) anion may be regarded as a new member of the [P(n)S(3n+1)]((n+2)-) series. The structure of Cs(2)Ti(2)(P(2)S(8))(PS(4))(2) (2) consists of the one-dimensional polar tunnels containing the Cs(+) cations. The rare [P(2)S(8)](4-) anion which is composed of two [PS(4)] tetrahedra joined by a S(2)(2-) anion is a fundamental building unit in the structure of 2. One-dimensional undulated chains being directed along [100] are joined by [PS(4)] tetrahedra to form the three-dimensional network with polar tunnels running along [010]. The compounds are characterized with IR, Raman spectroscopy, and UV/vis diffuse reflectance spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号