首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The b-chromatic number of a graph G is the largest integer k such that G admits a proper k-coloring in which every color class contains at least one vertex adjacent to some vertex in all the other color classes. It is proved that with four exceptions, the b-chromatic number of cubic graphs is 4. The exceptions are the Petersen graph, K 3,3, the prism over K 3, and one more sporadic example on 10 vertices.  相似文献   

2.
Every graph G contains a minimum vertex-coloring with the property that at least one color class of the coloring is a maximal independent set (equivalently, a dominating set) in G. Among all such minimum vertex-colorings of the vertices of G, a coloring with the maximum number of color classes that are dominating sets in G is called a dominating-χ-coloring of G. The number of color classes that are dominating sets in a dominating-χ-coloring of G is defined to be the dominating-χ-color number of G. In this paper, we continue to investigate the dominating-χ-color number of a graph first defined and studied in [1].  相似文献   

3.
Multithreshold graphs are defined in terms of a finite sequence of real thresholds that break the real line into a set of regions, alternating between NO and YES. If real ranks can be assigned to the vertices of a graph in such a way that two vertices are adjacent iff the sum of their ranks lies in a YES region, then that graph is a multithreshold graph with respect to the given set of thresholds. If a graph can be represented with k or fewer thresholds, then it is k-threshold. The case of one threshold is the classical case introduced by Chvátal and Hammer. In this paper, we show for every graph G, there is a k such that G is k-threshold, and we exhibit graphs for which the required number of thresholds is linear in the order of the graph.  相似文献   

4.
The concept of the line graph can be generalized as follows. The k-line graph Lk(G) of a graph G is defined as a graph whose vertices are the complete subgraphs on k vertices in G. Two distinct such complete subgraphs are adjacent in Lk(G) if and only if they have in G k ? 1 vertices in common. The concept of the total graph can be generalized similarly. Then the Perfect Graph Conjecture will be proved for 3-line graphs and 3-total graphs. Moreover, perfect 3-line graphs are not contained in any of the known classes of perfect graphs. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
A graph is (m, k)-colorable if its vertices can be colored with m colors in such a way that each vertex is adjacent to at most k vertices of the same color as itself. In a recent paper Cowen, Cowen, and Woodall proved that, for each compact surface S, there exists an integer k = k(S) such that every graph in S can be (4, k)-colored. They also conjectured that the 4 could be replaced by 3. In this note we prove their conjecture.  相似文献   

6.
We consider a weighted version of the well-known Vertex Coloring Problem (VCP) in which each vertex i of a graph G has associated a positive weight w i . Like in VCP, one is required to assign a color to each vertex in such a way that colors on adjacent vertices are different, and the objective is to minimize the sum of the costs of the colors used. While in VCP the cost of each color is equal to one, in the Weighted Vertex Coloring Problem (WVCP) the cost of each color depends on the weights of the vertices assigned to that color, and it equals the maximum of these weights. WVCP is known to be NP-hard and arises in practical scheduling applications, where it is also known as Scheduling on a Batch Machine with Job Compatibilities. We propose three alternative Integer Linear Programming (ILP) formulations for WVCP: one is used to derive, dropping integrality requirement for the variables, a tight lower bound on the solution value, while a second one is used to derive a 2-phase heuristic algorithm, also embedding fast refinement procedures aimed at improving the quality of the solutions found. Computational results on a large set of instances from the literature are reported.  相似文献   

7.
A total dominating set in a graph G is a set S of vertices of G such that every vertex in G is adjacent to a vertex of S. We study graphs whose vertex set can be partitioned into two total dominating sets. In particular, we develop several sufficient conditions for a graph to have a vertex partition into two total dominating sets. We also show that with the exception of the cycle on five vertices, every selfcomplementary graph with minimum degree at least two has such a partition.  相似文献   

8.
We call a graph (m, k)-colorable if its vertices can be colored with m colors in such a way that each vertex is adjacent to at most k vertices of the same color as itself. For the class of planar graphs, and the class of outerplanar graphs, we determine all pairs (m, k) such that every graph in the class is (m, k)-colorable. We include an elementary proof (not assuming the truth of the four-color theorem) that every planar graph is (4, 1)-colorable. Finally, we prove that, for each compact surface S, there is an integer k = k(S) such that every graph in S can be (4, k)-colored; we conjecture that 4 can be replaced by 3 in this statement.  相似文献   

9.
A graph G is 2-stratified if its vertex set is partitioned into two classes (each of which is a stratum or a color class.) We color the vertices in one color class red and the other color class blue. Let F be a 2-stratified graph with one fixed blue vertex v specified. We say that F is rooted at v. The F-domination number of a graph G is the minimum number of red vertices of G in a red-blue coloring of the vertices of G such that every blue vertex v of G belongs to a copy of F rooted at v. In this paper we investigate the F-domination number when (i) F is a 2-stratified path P3 on three vertices rooted at a blue vertex which is a vertex of degree 1 in the P3 and is adjacent to a blue vertex and with the remaining vertex colored red, and (ii) F is a 2-stratified K3 rooted at a blue vertex and with exactly one red vertex.  相似文献   

10.
A graph G is 2-stratified if its vertex set is partitioned into two nonempty classes (each of which is a stratum or a color class). We color the vertices in one color class red and the other color class blue. Let F be a 2-stratified graph with one fixed blue vertex v specified. We say that F is rooted at v. The F-domination number of a graph G is the minimum number of red vertices of G in a red-blue coloring of the vertices of G such that for every blue vertex v of G, there is a copy of F in G rooted at v. In this paper, we survey recent results on the F-domination number for various 2-stratified graphs F.  相似文献   

11.
The (r,d)‐relaxed coloring game is played by two players, Alice and Bob, on a graph G with a set of r colors. The players take turns coloring uncolored vertices with legal colors. A color α is legal for an uncolored vertex u if u is adjacent to at most d vertices that have already been colored with α, and every neighbor of u that has already been colored with α is adjacent to at most d – 1 vertices that have already been colored with α. Alice wins the game if eventually all the vertices are legally colored; otherwise, Bob wins the game when there comes a time when there is no legal move left. We show that if G is outerplanar then Alice can win the (2,8)‐relaxed coloring game on G. It is known that there exists an outerplanar graph G such that Bob can win the (2,4)‐relaxed coloring game on G. © 2004 Wiley Periodicals, Inc. J Graph Theory 46:69–78, 2004  相似文献   

12.
A proper vertex coloring of a graph is equitable if the sizes of color classes differ by at most one. The celebrated Hajnal-Szemerédi Theorem states: For every positive integer r, every graph with maximum degree at most r has an equitable coloring with r+1 colors. We show that this coloring can be obtained in O(rn 2) time, where n is the number of vertices.  相似文献   

13.
A dominator coloring is a coloring of the vertices of a graph such that every vertex is either alone in its color class or adjacent to all vertices of at least one other class. We present new bounds on the dominator coloring number of a graph, with applications to chordal graphs. We show how to compute the dominator coloring number in polynomial time for P 4-free graphs, and we give a polynomial-time characterization of graphs with dominator coloring number at most 3.  相似文献   

14.
LetF be a set of nonoverlapping spheres in Euclideann-spaceE n . By the contact pattern ofF we mean the graph whose vertex set isF and two vertices are adjacent whenever the corresponding spheres touch each other. Every graph turns out to be a contact pattern in some dimension. This paper studies the smallest dimensionn for a graphG such thatG is a contact pattern inE n . Among others, the smallest dimensions are determined for the join of a large complete graph and an empty graph, and for complete multipartite graphs with more vertex classes than the size of its largest vertex class.  相似文献   

15.
A clique is a set of pairwise adjacent vertices in a graph. We determine the maximum number of cliques in a graph for the following graph classes: (1) graphs with n vertices and m edges; (2) graphs with n vertices, m edges, and maximum degree Δ; (3) d-degenerate graphs with n vertices and m edges; (4) planar graphs with n vertices and m edges; and (5) graphs with n vertices and no K5-minor or no K3,3-minor. For example, the maximum number of cliques in a planar graph with n vertices is 8(n − 2). Research supported by a Marie Curie Fellowship of the European Community under contract 023865, and by the projects MCYT-FEDER BFM2003-00368 and Gen. Cat 2001SGR00224.  相似文献   

16.
A graph coloring game introduced by Bodlaender (Int J Found Comput Sci 2:133–147, 1991) as coloring construction game is the following. Two players, Alice and Bob, alternately color vertices of a given graph G with a color from a given color set C, so that adjacent vertices receive distinct colors. Alice has the first move. The game ends if no move is possible any more. Alice wins if every vertex of G is colored at the end, otherwise Bob wins. We consider two variants of Bodlaender’s graph coloring game: one (A) in which Alice has the right to have the first move and to miss a turn, the other (B) in which Bob has these rights. These games define the A-game chromatic number resp. the B-game chromatic number of a graph. For such a variant g, a graph G is g-perfect if, for every induced subgraph H of G, the clique number of H equals the g-game chromatic number of H. We determine those graphs for which the game chromatic numbers are 2 and prove that the triangle-free B-perfect graphs are exactly the forests of stars, and the triangle-free A-perfect graphs are exactly the graphs each component of which is a complete bipartite graph or a complete bipartite graph minus one edge or a singleton. From these results we may easily derive the set of triangle-free game-perfect graphs with respect to Bodlaender’s original game. We also determine the B-perfect graphs with clique number 3. As a general result we prove that complements of bipartite graphs are A-perfect.   相似文献   

17.
The b-chromatic number of a graph G is the largest integer k such that G has a coloring of the vertices in k color classes such that every color class contains a vertex that has a neighbour in all other color classes. We characterize the class of chordal graphs for which the b-chromatic number is equal to the chromatic number for every induced subgraph. This research was supported by Algerian-French program CMEP/Tassili 05 MDU 639.  相似文献   

18.
A b‐coloring is a coloring of the vertices of a graph such that each color class contains a vertex that has a neighbor in all other color classes, and the b‐chromatic number of a graph G is the largest integer k such that G admits a b‐coloring with k colors. A graph is b‐perfect if the b‐chromatic number is equal to the chromatic number for every induced subgraph of G. We prove that a graph is b‐perfect if and only if it does not contain as an induced subgraph a member of a certain list of 22 graphs. This entails the existence of a polynomial‐time recognition algorithm and of a polynomial‐time algorithm for coloring exactly the vertices of every b‐perfect graph. © 2011 Wiley Periodicals, Inc. J Graph Theory 71:95–122, 2012  相似文献   

19.
20.
Let G be a k-connected graph of order n. For an independent set c, let d(S) be the number of vertices adjacent to at least one vertex of S and > let i(S) be the number of vertices adjacent to at least |S| vertices of S. We prove that if there exists some s, 1 ≤ s ≤ k, such that ΣxiEX d(X\{Xi}) > s(n?1) – k[s/2] – i(X)[(s?1)/2] holds for every independetn set X ={x0, x1 ?xs} of s + 1 vertices, then G is hamiltonian. Several known results, including Fraisse's sufficient condition for hamiltonian graphs, are dervied as corollaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号