首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Supramolecular metal ion assemblies are deposited from their solutions onto highly orientated pyrolytic graphite (HOPG) substrates to be imaged by scanning tunnelling microscopy (STM). Since the structural and electronic information of STM measurements are strongly entangled, the spectroscopic interpretation and analysis of the images of such molecular assemblies has proven to be challenging. This tutorial review focuses on a general room temperature scanning tunnelling spectroscopy (STS) protocol, current induced tunnelling spectroscopy (CITS), applied to free-standing 1D and 2D arrangements of supramolecular metal ion assemblies rendering local tunnelling probabilities with submolecular resolution. The size of the investigated molecular assemblies was confirmed by comparison with X-ray crystallographic data, while the consistency of the spectroscopic investigations and of the determined positions of the metal ions within the assemblies was checked by DFT calculations. Due to the genuine level structure of coordinated metal centers, it was possible to map exclusively the position of the coordination bonds in supramolecular transition metal assemblies with submolecular spatial resolution using the CITS technique. CITS might thus constitute an important tool to achieve directed bottom-up construction and controlled manipulation of fully electronically functional, two-dimensional molecular designs.  相似文献   

2.
Photovoltaic devices built by a hierarchical self-assembly process using hydrogen-bonding terminated self-assembled monolayers (SAMs) on gold and the combination of a hydrogen-bonding barbituric acid appended fullerene and a complementary melamine terminated π-conjugated thiophene-based oligomer are presented. The incorporation of these electron donor (oligomer) and electron acceptor (methanofullerene) assemblies into simple photovoltaic (PV) devices as thin films leads to a 2.5 fold-enhancement in photocurrent compared to analogous systems comprising non-hydrogen-bonding C60-oligomer systems, which is ascribed to higher molecular-level ordering. The modification of the gold electrode surface with self-assembled monolayers bearing hydrogen-bonding molecular recognition endgroups was seen to further enhance the PV response of the corresponding functional supramolecular device. This superposition of two types of self-assembly facilitates the generation of binary supramolecular fullerene-containing architectures. Importantly, all functional materials are accessible in a direct fashion.  相似文献   

3.
We have fabricated hybrid molecular chain structures formed by electron acceptor compound 1 and electron donor molecules 2 and 3 at the liquid/solid interface of graphite surface.The structural details of the mono-component and the binary assemblies are revealed by high resolution scanning tunneling microscopy (STM).Compound 1 can form two well-ordered lamellar patterns at different concentrations.In the co-adsorption structures,compounds 2 and 3 can insert into the space between molecular chains of compound 1 and form large area well-ordered nanoscale phase separated lamellar structures.The unit cell parameters for the coassemblies can be "flexibly" adjusted to make the electron donors and acceptors perfectly match along the molecular chains.Scanning tunneling spectroscopy (STS) results indicate that the electronic properties of individual molecular donors and acceptors are preserved in the binary self-assembly.These results provide molecular insight into the nanoscale phase separation of organic electron acceptors and donors on surfaces and are helpful for the fabrication of surface supramolecular structures and molecular devices.  相似文献   

4.
The development of new strategies for the preparation of multicomponent supramolecular assemblies is a major challenge on the road to complex functional molecular systems. Here we present the use of a non-porous self-assembled monolayer from uC33-NDI-uC33 , a naphthalenediimide symmetrically functionalized with unsaturated 33 carbon-atom-chains, to prepare bicomponent supramolecular surface systems with a series of alkoxy-pyrene ( PyrOR ) derivatives at the liquid/HOPG interface. While previous attempts at directly depositing many of these PyrOR units at the liquid/HOPG interface failed, the multicomponent approach through the uC33-NDI-uC33 template enabled control over molecular interactions and facilitated adsorption. The PyrOR deposition restructured the initial uC33-NDI-uC33 monolayer, causing an expansion in two dimensions to accommodate the guests. As far as we know, this represents the first example of a non-porous or non-metal complex-bearing monolayer that allows the stepwise formation of multicomponent supramolecular architectures on surfaces.  相似文献   

5.
Charge‐transfer (CT) assemblies of aromatic donor (D) and acceptor (A) molecules have recently gained attention as a promising material for organic electronics and ferroelectrics. Two major factors which govern their functions are the strength of CT interaction and their supramolecular nanostructuring. Here we present coronene‐naphthalenediimide (NDI)‐based novel D‐A pairs that form alternately stacked CT assemblies. Through systematic substitution of the NDI derivatives and studying their CT interactions with coronene, a clear understanding of the secondary forces responsible for controlling their association is gained. Finally, the use of CT‐based supramolecular amphiphiles for their nanostructural engineering into ordered one‐dimensional (1‐D) assemblies is demonstrated.  相似文献   

6.
The self-organization of supramolecular structures, in particular gold-containing hydrogen-bonded rosettes, on highly oriented pyrolytic graphite (HOPG) surfaces was investigated by tapping-mode atomic force microscopy (TM-AFM) and scanning tunneling microscopy (STM). TM-AFM and high-resolution STM results show that these hydrogen-bonded assemblies self-organize to form highly ordered domains on HOPG surfaces. We find that a subtle change in one of the building blocks induces two different orientations of the assembly with respect to the surface. These results provide information on the control over the construction of supramolecular nanoarchitectures in 2D with the potential for the manufacturing of functional materials based on structural manipulation of molecular components.  相似文献   

7.
Novel supramolecular coatings that make use of low-molecular weight ditopic monomers with guanine end groups are studied using fluid tapping AFM. These molecules assemble on highly oriented pyrolytic graphite (HOPG) from aqueous solutions to form nanosized banding structures whose sizes can be systematically tuned at the nanoscale by tailoring the molecular structure of the monomers. The nature of the self-assembly in these systems has been studied through a combination of the self-assembly of structural derivatives and molecular modeling. Furthermore, we introduce the concept of using these molecular assemblies as scaffolds to organize functional groups on the surface. As a first demonstration of this concept, scaffold monomers that contain a monomethyl triethyleneglycol branch were used to organize these "functional" units on a HOPG surface. These supramolecular grafted assemblies have been shown to be stable at biologically relevant temperatures and even have the ability to significantly reduce static platelet adhesion.  相似文献   

8.
Supramolecular self-assembly,an important strategy in nanotechnology,has been widely studied in the past two decades.In this review,we have introduced the recent progress on construction of two-dimensional(2D)nanostructures by host-guest supramolecular chemistry at solid-liquid interface,and the interactions between the host assembly and the guest molecules are the major concerns.At first,the hydrogen bonds connected hybrid structures are discussed.And then we have paid a close attention on the surface-confined condensation reactions that has flourished recently in direct preparing novel nanostructures with increasing structural complexity.In the end,the cavity confinement of the 2D supramolecular host-guest architectures has been studied.On the basis of the above-mentioned interactions,a group of functional hybrid structures have been prepared.Notably,scanning tunneling microscopy(STM),a unique technique to probe the surface morphology and information at the single molecule level,has been used to probe the formed structures on highly oriented pyrolytic graphite(HOPG)surface.  相似文献   

9.
The formation of coaxial p–n heterojunctions by mesoscale alignment of self‐sorted donor and acceptor molecules, important to achieve high photocurrent generation in organic semiconductor‐based assemblies, remains a challenging topic. Herein, we show that mixing a p‐type π gelator (TTV) with an n‐type semiconductor (PBI) results in the formation of self‐sorted fibers which are coaxially aligned to form interfacial p–n heterojunctions. UV/Vis absorption spectroscopy, powder X‐ray diffraction studies, atomic force microscopy, and Kelvin‐probe force microscopy revealed an initial self‐sorting at the molecular level and a subsequent mesoscale self‐assembly of the resulted supramolecular fibers leading to coaxially aligned p–n heterojunctions. A flash photolysis time‐resolved microwave conductivity (FP‐TRMC) study revealed a 12‐fold enhancement in the anisotropic photoconductivity of TTV/PBI coaxial fibers when compared to the individual assemblies of the donor/acceptor molecules.  相似文献   

10.
Synthetic macrocycles have served as principal tools for supramolecular chemistry, have greatly extended the scope of organic charge transfer (CT) complexes, and have proved to be of great practical value in the solid state during the past few years. In this Minireview, we summarize the research progress on the macrocycle-based crystalline supramolecular assemblies primarily driven by intermolecular CT interactions (a.k.a. macrocycle-based crystalline CT assemblies, MCCAs for short), which are classified by their donor–acceptor (D-A) constituent elements, including simplex macrocyclic hosts, heterogeneous macrocyclic hosts, and host–guest D-A pairs. Particular attention will be focused on their diverse functions and applications, as well as the underlying CT mechanisms from the perspective of crystal engineering. Finally, the remaining challenges and prospects are outlined.  相似文献   

11.
《中国化学快报》2023,34(12):108439
Developing novel emissive supramolecular assemblies with elegant architectures and tunable performance remains highly desirable yet challenging. Herein, we report the design and synthesis of several 9,10-bis(diphenylmethylene)-9,10-dihydroanthracene-based metal-organic assembles with aggregation-induced emission characteristics. Such assemblies feature intriguing thermochromic and mechanochromic properties, i.e., distinguishable fluorescence responses in terms of emission wavelength and intensity under variable temperatures and pressures. Moreover, these assemblies can serve as excellent fluorescent sensors for the detection of polysaccharide molecules. Due to the differentiated charge type and density, the assembles display distinct sensing mechanisms toward different polysaccharide molecules. This study provides novel perspectives for the synthesis of butterfly-like platinum(II) supramolecular coordination complexes with multistimuli-responsiveness for polysaccharide sensing, which will facilitate the development of stimuli-responsive materials  相似文献   

12.
The functionalization of natural 1D architectures is dependent on hierarchically inner nanostructures. However, the artificial supramolecular nanofibers or nanotubes were rarely developed with complex inner structures. Inspired by a biomimetic strategy, single-molecule-diameter nanofibers of double-decker phthalocyanine (EuPc2) with compartmentalized internal space and fantastic electrochemical features were developed upon air/water interfacial assembly with poly-l -lysine. EuPc2/poly-l -lysine nanofibers can be electrochemical sensors both in water and the gas phase and have the best analytical performances for nitrite among all the porphyrins or phthalocyanines monomers and assemblies. Imbedding nitrite in compartments not only promotes the sensing but also changes the supramolecular chirality of nanofibers, and the morphological-dependent sensing properties of EuPc2 assemblies in water are different from that in the gas phase. These results suggest the unprecedented properties for diverse applications of artificial 1D architectures containing complex inner nanostructures.  相似文献   

13.
The formation of well‐defined finite‐sized aggregates represents an attractive goal in supramolecular chemistry. In particular, construction of discrete π‐stacked dye assemblies remains a challenge. Reported here is the design and synthesis of a novel type of discrete π‐stacked aggregate from two comparable perylenediimide (PDI) dyads ( PEP and PBP ). The criss‐cross PEP ‐ PBP dimers in solution and ( PBP ‐ PEP )‐( PEP ‐ PBP ) tetramers in the solid state are well elucidated using single‐crystal X‐ray diffraction, dynamic light scattering, and diffusion‐ordered NMR spectroscopy. Extensive π–π stacking between the PDI units of PEP and PBP as well as repulsive interactions of swallow‐tailed alkyl substituents are responsible for the selective formation of discrete dimer and tetramer stacks. Our results reveal a new approach to preparing discrete π stacks that are appealing for making assemblies with well‐defined optoelectronic properties.  相似文献   

14.
Using a metal-ligand coordination bonding approach, the self-assembly of four new metallamacrocycles from Pd(ii)-based 90 degrees acceptors and a diimidazole donor ligand 1,3-bis(imidazole-1-ylmethyl)-2,4,6-trimethylbenzene (L) has been achieved. The assemblies are characterized fully by NMR and electrospray ionization-mass spectroscopic (ESI-MS) analysis and in two cases the X-ray single-crystal structure analysis established the gross structures. The selective formation of a diimidazole-based linker (L) containing macrocycle [(en)Pd(micro-L)2Pd(en)]4+ from a 1 : 1 : 1 mixture of cis-Pd(en)(NO3)2, and 1,2-bis(4-pyridyl)ethane is also established. Measuring the binding constants established the stronger Pd- binding force compared to traditional Pd-N(pyridyl linker) interaction, which reveals the possibility of using imidazole donor ligands as potential linkers or even better ligands compared to the widely used pyridyl donor ligands in the construction of metal-based large supramolecular assemblies.  相似文献   

15.
Hydrogen bonds with high selectivity and directionality are significant in harnessing molecules to form 2D supramolecular nanostructures. The competition and reorganization of hydrogen bond partners determine the ultimate molecular assembly and pattern in a 2D supramolecular system. In this study, multicomponent assemblies of a monodendron (5-benzyloxy-isophthalic acid derivative, BIC) and pyridylethynyl derivatives [1,4-bis(4-pyridylethynyl)-2,3-bis-dodecyloxy-benzene (PBPC12) and 1,4-bis(4-pyridylethynyl)-2,3-bis-octadecyloxy-benzene (PBPC18)] have been studied by scanning tunneling microscopy (STM) on a graphite surface. BIC molecules are able to associate with PBPC12 and PBPC18 molecules to induce the rearrangement of hydrogen bond partners and form coassembly structures. Interestingly, BIC acts as a template molecule in the coassembly process, and these multicomponent structures exhibit similar structural features to the assembly structures of BIC itself. The structural details of the coassembled structures are revealed by high-resolution STM images, and their relationship with the original BIC assemblies is discussed. These results provide important insights into the design and fabrication of hydrogen-bond-directed multicomponent molecular nanostructures on solid surfaces.  相似文献   

16.
We have collated various supramolecular designs that utilize organic donor–acceptor CT complexation to generate noncovalently co‐assembled structures including fibrillar gels, micelles, vesicles, nanotubes, foldamers, conformationally restricted macromolecules, and liquid crystalline phases. Possibly inspired by nature, chemists have extensively used hydrogen bonding as a tool for supramolecular assemblies of a diverse range of abiotic building blocks. As a structural motif, CT complexes can be compared to hydrogen‐bonded complexes in its directional nature and complementarities. Additional advantages of CT interactions include wider solvent tolerance and easy spectroscopic probing. Nevertheless the major limitation is their low association constant. This article shows different strategies have evolved over the years to overcome this drawback by reinforcing the CT interactions with auxiliary noncovalent forces without hampering the alternate stacking mode. Emerging reports on promising CT complexes in organic electronics are intimately related to various supramolecular designs that one can postulate based on donor–acceptor CT interactions.  相似文献   

17.
N-Containing heteroaromatics 1,2,4,5-tetra(pyridin-3-yl)benzene[1,2,4,5-T(3-PY)B] and 1,2,4,5-tetra-(pyridin-4-yl)benzene[1,2,4,5-T(4-PY)B] were each co-crystallized with 1,2-diiodo-tetrafluoro-benzene(1,2-DITFB), or 1,4-diiodo-tetrafluoro-benzene(1,4-DITFB), respectively, generating four co-crystals, namely, (1,2-DITFB)4·[1,2,4,5-T(3-PY)B](1), (1,2-DITFB)4·[1,2,4,5-T(4-PY)B](2), (1,4-DITFB)2·[1,2,4,5-T(3-PY)B]·CHCl3(3), and (1,4-DITFB)·[1,2,4,5-T(4-PY)B]·2CHCl3(4). This study takes aim at providing an insight into the relative importance of fundamental solid state halogen bonding interactions(i.e., halogen…N, halogen…halogen, and halogen…π) in systems. The effects of the donor and acceptor on supramolecular assembly and the crystal structure determined interactions were discussed. The N…I halogen bonds are the main directing interactions responsible for the observed structures. In compounds 1 and 2, the donors exhibited lower-than-expected supramolecular connectivity. In spite of this, co-crystal 2 exhibits polymeric structures consisting of infinite one-dimensional(1D) double-zigzag chains of alternating electron donor and acceptor. The basic structure of co-crystals 3 and 4 is also infinite 1D chain. Therefore, the 1D halogen bonded supramolecular assemblies can be obtained by matching the appropriate donor and acceptor.  相似文献   

18.
Control over supramolecular assemblies of donor and acceptor arrays in nanoscale dimension that facilitate efficient energy transfer resulting in tunable emission is an outstanding challenge. In pursuit of this goal, we have designed a supramolecular donor-acceptor organogel with tunable emission from green to red through controlled energy transfer by simply varying the acceptor concentration. Temperature-dependent UV/vis absorption, XRD, and AFM studies of the coassembly of 1 (donor) and 2 (acceptor) revealed the intercalation of 2 within the self-assembly of 1. Upon excitation of the decane gels of 1 with 0-2 mol % of 2, quenching of the emission of the former at 509 nm with the formation of the monomer emission of the latter at 555 nm is observed. Upon further addition of 2 (2-20 mol %), the emission was continuously red-shifted to 610 nm, which corresponds to the aggregate emission of 2. Consequently, a 98% quenching of the donor emission was observed at 509 nm. Fluorescence microscopic studies provided visual evidence for the color tuning of the FRET emission. Thus efficient trapping of excitons by "isolated" or "aggregated" acceptors through a subtle control of the self-assembly and the photophysical properties of the donor-acceptor building blocks allowed a continuous shifting of the emission color anywhere between green and red (lambdamax, 509-610 nm) in a supramolecular light harvesting system.  相似文献   

19.
Self-assembly of coordination frameworks exhibiting original architectures is an active area of research. Generally, such assemblies are constructed from organic spacers and transition metals of different geometrical structures. Herein, we report a novel class of supramolecular coordination assemblies with organometallic linkers based on metalated quinonoid and thioquinonoid complexes that serve as spacers. The organometallic ligands are stable and have the general formula [Cp*M(eta(4)-benzoquinone)] (o- and p-benzoquinone, Cp*=C(5)Me(5), M=Rh, Ir) and [Cp*Ir(eta(4)-thiobenzoquinone)] (o- and p-thiobenzoquinone). These units bind through both oxygen or sulfur atoms to metal ions of different coordination geometry, such as Cu(I), Ag(I), and Pt(II), to generate supramolecular coordination networks, with the metalated quinonoid or thioquinonoid linkers acting as backbones and the metal centers as nodes. This novel family of supramolecular assemblies exhibits short pi-pi and MM interactions. These results illustrate successfully the role of the organometallic linkers to produce an impressive range of novel supramolecular architectures that hold promise for the development of functional materials.  相似文献   

20.
The field of supramolecular assemblies has developed rapidly in the last few decades, thanks in a large part to their diverse applications. These assemblies have been mostly based on Werner-type coordination motifs in which metal centres are coordinated by nitrogen or oxygen donors. Recently, N-heterocyclic carbene(NHC) ligands have been employed as carbon donors not only because of their appealing structures but also due to the extensive applications in catalysis, biomedicine and material science of the resulting assemblies. During the last decade, NHC-based supramolecular assemblies have witnessed rapid growth and extensive application in molecular recognition, luminescent materials and catalysis. For different topological systems, a diverse selection of poly-NHC precursors and synthetic strategies is crucial to precisely control the synthesis of supramolecular architectures. Several synthetic strategies have been developed to synthesise two-dimensional(2D) molecular metallacycles and three-dimensional(3D) metallacages from a wide range of poly-NHC precursors, including a straightforward one-pot strategy,supramolecular transmetalation, stepwise synthesis, an improved one-pot strategy involving self-sorting behaviour of 3D metallacages and a subtle variation strategy of poly-NHC ligand precursors. This review offers a summary of the synthetic strategies applied for the construction of different poly-NHC-based supramolecular assemblies, particularly emphasizes recent progress in the synthesis of large and complex supramolecular assemblies from poly-NHC precursors, and further attention is given to their application in postsynthetic modifications(PSMs), host-guest chemistry, luminescent properties and biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号