首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatially selective excitation sequence CARVE (completely arbitrary regional volume excitation) excites signal from an arbitrarily shaped profile (I. Sersa, S. Macura: Magn. Reson. Med.37, 920–931, 1997) by an interleaved sequence of precalculated small tip angle radio-frequency pulses and gradient pulses. Here we propose a spatially selective observation method based on the CARVE principles which is insensitive to the relaxation and the off-resonance effects. The method, CARVED (CARVE detection), excites spins uniformly across the sample and across the spectrum but achieves spatial selectivity by weighted coaddition of the signals after the data acquisition. CARVE-D is suitable for spatially selective high-resolution nuclear magnetic resonance spectroscopy in chemically and geometrically complex systems. The method is analyzed theoretically and demonstrated experimentally on model systems.  相似文献   

2.
We propose a method to improve the sensitivity in volume selective detection based on the CARVE excitation sequence (I. Sersa and S. Macura, J. Magn. Reson. 135, 466-477 (1998)) which consists of signal acquisition with constant tip angle excitation and a short phase-encoding gradient pulse. Volume selectivity is achieved using the weighted average of a number of scans whose weights and gradient steps are determined by the shape of the excitation profile. The method is particularly useful for broadband volume selective detection of insensitive spins where the volume selection can be merged with the standard signal averaging process, without compromising the excitation bandwidth or sensitivity.  相似文献   

3.
The purpose of this study was to investigate and to optimize the performance of two-dimensional spatially selective excitation pulses used for navigator applications on a clinical scanner. The influence of gradient imperfections, off-resonance effects, and incomplete k-space covering on the pencil beam-shaped spatial excitation profile of the 2D RF pulse was studied. The studies involved experiments performed on phantoms and in vivo. In addition, simulations were carried out by numerical integration of the Bloch equations. The accuracy of positioning of the pencil beam was increased by a factor of three by employing a simple correction scheme for the compensation of gradient distortions. The spatial selectivity of the 2D RF pulse was improved by taking sampling density corrections into account. The 2D RF pulse performance was found to be sufficient to monitor the diaphragm motion even at moderate gradient strength. For applications, where a high spatial resolution is required or a less characteristic contrast is present a strong gradient system is recommended.  相似文献   

4.
Gapped pulses for frequency-swept MRI   总被引:1,自引:0,他引:1  
A recently introduced method called SWIFT (SWeep Imaging with Fourier Transform) is a fundamentally different approach to MRI which is particularly well suited to imaging objects with extremely fast spin–spin relaxation rates. The method exploits a frequency-swept excitation pulse and virtually simultaneous signal acquisition in a time-shared mode. Correlation of the spin system response with the excitation pulse function is used to extract the signals of interest. With SWIFT, image quality is highly dependent on producing uniform and broadband spin excitation. These requirements are satisfied by using frequency-modulated pulses belonging to the hyperbolic secant family (HSn pulses). This article describes the experimental steps needed to properly implement HSn pulses in SWIFT. In addition, properties of HSn pulses in the rapid passage, linear region are investigated, followed by an analysis of the pulses after inserting the “gaps” needed for time-shared excitation and acquisition. Finally, compact expressions are presented to estimate the amplitude and flip angle of the HSn pulses, as well as the relative energy deposited by the SWIFT sequence.  相似文献   

5.
Parallel excitation using multiple transmit channels has emerged as an effective method to shorten multidimensional spatially selective radiofrequency (RF) pulses, which have a number of important applications, including B1 field inhomogeneity correction in high-field MRI. The specific absorption rate (SAR) is a primary concern in high-field MRI, where wavelength effects can lead to local peaks in SAR. In parallel excitation, the subjects are exposed to RF pulses from multiple coils, which makes the SAR problem more complex to analyze, yet potentially enables greater freedom in designing RF pulses with lower SAR. Parallel-excitation techniques typically employ either Cartesian or constant-density (CD) spiral trajectories. In this article, variable-density (VD) spiral trajectories are explored as a means for SAR reduction in parallel-excitation pulse design. Numerical simulations were conducted to study the effects of CD and VD spirals on parallel excitation. Specifically, the electromagnetic fields of a four-channel transmit head coil with a three-dimensional head model at 4.7 T were simulated using a finite-difference time domain method. The parallel RF pulses were designed and the resulting excitation patterns were generated using a Bloch simulator. The SAR distributions due to CD and VD spirals were evaluated quantitatively. The simulation results show that, for the same pulse duration, parallel excitation with VD spirals can achieve a lower SAR compared to CD spirals for parallel excitation. VD spirals also resulted in reduced artifact power in the excitation patterns. This gain came with slight, but noticeable, degrading of the spatial resolution of the resulting excitation patterns.  相似文献   

6.
In NMR imaging and in vivo spectroscopy, slice selection is usually achieved by applying a frequency-selective RF pulse in the presence of a magnetic field gradient. A serious limitation of this method of slice selection is that, in a system with many different chemical shifts, the selected slice is offset in space for each chemically shifted resonance. In the present study, a composite RF pulse that is insensitive to chemical-shift differences has been developed. The pulse involves applying a RF pulse of desired shape in the presence of an alternating magnetic field gradient, together with hard 180° pulses at each gradient transition. Calculations are presented to show that excitation with the proposed pulse averages the chemical-shift term to zero. An exact calculation for a rectangular RF excitation shape verifies this. Experiments based on observing the RF excitation profiles have been performed to demonstrate the validity of the proposed pulse.  相似文献   

7.
The effect of using self-refocused RF pulses of comparable duration to relaxation times is studied in detail using numerical simulation. Transverse magnetization decay caused by short T2 and longitudinal component distortion due to short T1 are consistent with other studies. In order to design new pulses to combat short T1 and T2 the relaxation terms are directly inserted into the Bloch equations. These equations are inverted by searching the RF solution space using simulated annealing global optimization technique. A new T2-decay efficient excitation pulse is created (SDETR: single delayed excursion T2 resistive) which is also energy efficient. Inversion pulses which improve the inverted magnetization profile and achieve better suppression of the remaining transverse magnetization are also created even when both T1 and T2 are short. This is achieved, however, on the expense of a more complex B1 shape of larger energy content.  相似文献   

8.
Through numerical solution of the Schrödinger equation we illustrate the influence of laser modulation upon the excitation of anN-level system irradiated by simultaneous laser pulses. We show that amplitude modulation, applied to a Gaussian statistical distribution of detunings, creates a sideband structure to the excitation-reaction profile which can enhance the excitation over that for monochromatic excitation.This work was performed under the auspices of the U.S. Energy Research and Development Administration under contract No. W-7405-Eng-48.  相似文献   

9.
At higher B(0) fields, specific absorption rate (SAR) deposition increases. Due to maximum SAR limitation, slice coverage decreases and/or scan time increases. Conventional selective RF pulses are played out in conjunction with a time independent field gradient. Variable rate selective excitation (VERSE) is a technique that modifies the original RF and gradient waveforms such that slice profile is unchanged. The drawback is that the slice profile for off-resonance spins is distorted. A new VERSE algorithm based on modeling the scaled waveforms as a Fermi function is introduced. It ensures that system related constraints of maximum gradient amplitude and slew rate are not exceeded. The algorithm can be used to preserve the original RF pulse duration while minimizing SAR and peak b1 or to minimize the RF pulse duration. The design is general and can be applied to any symmetrical or asymmetrical RF waveform. The algorithm is demonstrated by using it to (a) minimize the SAR of a linear phase RF pulse, (b) minimize SAR of a hyperbolic secant RF pulse, and (c) minimize the duration of a linear phase RF pulse. Images with a T1-FLAIR (T1 FLuid Attenuated Inversion Recovery) sequence using a conventional and VERSE adiabatic inversion RF pulse are presented. Comparison of images and scan parameters for different anatomies and coils shows increased scan coverage and decreased SAR with the VERSE inversion RF pulse, while image quality is preserved.  相似文献   

10.
The multiple-modulation-multiple-echo sequence, previously used for rapid measurement of diffusion, is extended to a method for single shot imaging. Removing the gradient switching requirement during the application of RF pulses by a constant frequency encoding gradient can shorten experiment time for ultrafast imaging. However, having the gradient on during the pulses gives rise to echo shape variations from off-resonance effects, which make the image reconstruction difficult. In this paper, we propose a simple method to deconvolve the echo shape variation from the true one-dimensional image. This method is extended to two-dimensional imaging by adding phase encoding gradients between echoes during the acquisition period to phase encode each echo separately. Slice selection is achieved by a frequency selective pulse at the beginning of the sequence. Imaging speed is mainly limited by the phase encoding gradients' switching times and echo overlap when echo spacing is very short. This technique can produce a single-shot image of sub-millimeter resolution in 5 ms.  相似文献   

11.
A systematic design procedure for selective pulses in NMR imaging   总被引:1,自引:0,他引:1  
Spectral tailoring of an amplitude-modulated radio-frequency (RF) pulse may be used to modify the slice-profile produced by a selective excitation sequence. Optimisation of the profile by intuitive means is difficult, however, due to the non-linearity of the magnetisation's response. A design procedure is presented which uses computer-simulation to calculate the response to an arbitrary RF envelope, and alters systematically the shape of the envelope in order to optimise the slice-profile. Two forms of modulation function are suggested, both based on a truncated-sinc, and the simulated response to optimised 90 degrees and 180 degrees pulses is shown. The effect on the slice-profile of RF magnetic field inhomogeneity is discussed.  相似文献   

12.
Two T2-independentJ-difference lactate editing schemes for the PRESS magnetic resonance spectroscopy localization sequence are introduced. The techniques, which allow for simultaneous acquisition of the lactate doublet (1.3 ppm) and edited singlets upfield of and including choline (3.2 ppm), exploit the dependence of the in-phase intensity of the methyl doublet upon the time interval separating two inversion (BASING) pulses applied to its coupling partner after initial excitation. Editing method 1, which allows for echo times TE =n/J(n= 1, 2, 3, …), alters the BASING carrier frequency for each of two cycles so that, for one cycle, the quartet is inverted, whereas, for the other cycle, the quartet is unaffected. Method 2, which also provides water suppression, allows for editing for TE > 1/Jby alternating, between cycles, the time interval separating the inversion pulses. Experimental results were obtained at 1.5 T using a Shinnar Le–Roux-designed maximum phase inversion pulse with a filter transition bandwidth of 55 Hz. Spectra were acquired from phantoms andin vivofrom the human brain and neck. In a neck muscle study, the lipid suppression factor, achieved partly through the use of a novel phase regularization algorithm, was measured to be over 103. Spectra acquired from a primary brain and a metastatic neck tumor demonstrated the presence of lactate and choline signals consistent with abnormal spectral patterns. The advantages and limitations of the methods are analyzed theoretically and experimentally, and significance of the results is discussed.  相似文献   

13.
Spectral editing using gradient selected double-quantum (DQ) coherence transfer is often used for the selective observation of metabolites in vivo. In attempting to optimize the detection sensitivity of a conventional DQ spectral editing sequence, the effects of using radiofrequency (RF) pulses that are not at the resonance frequency of the observed peaks were investigated both theoretically and experimentally. The results show that spectral editing using pulses at the frequency of the observed resonance does not necessarily give the optimal detection sensitivity. At 7 T, the detection sensitivity of lactate observed using a DQ editing method can be increased by up to 30% by setting the RF pulses off resonance at the proper frequency. The results also suggest that slice selective RF pulses used in DQ spectral editing combined with PRESS localization may have slice profiles different from those when the same pulses are used for standard PRESS spatial localization.  相似文献   

14.
PurposeTo investigate velocity encoded and velocity compensated variants of multi-spoke RF pulses that can be used for flip-angle homogenization at ultra-high fields (UHF). Attention is paid to the velocity encoding for each individual spoke pulse and to displacement artifacts that arise in Fourier transform imaging in the presence of flow.Theory and methodsA gradient waveform design for multi-spoke excitation providing an algorithm for minimal TE was proposed that allows two different encodings. Such schemes were compared to an encoding approach that applies an established scheme to multi-spoke excitations. The impact on image quality and quantitative velocity maps was evaluated in phantoms using single- and two-spoke excitations. Additional validation measurements were obtained in-vivo at 7 T.ResultsPhantom experiments showed that keeping the first gradient moment constant for all k-space lines eliminates any displacements in phase-encoding and slice-selection direction for all spoke pulses but leads to artifacts for non-zero velocity components along readout direction. Introducing variable but well-defined first gradient moments in the phase-encoding direction creates displacements along the velocity vector and thus minimizes velocity-induced geometrical distortions. Phase-resolved mean volume flow in the ascending and descending aorta obtained from two-spoke excitation showed excellent agreement with single-spoke excitation over the cardiac cycle (mean difference 0.8 ± 16.2 ml/s).ConclusionsThe use of single- and multi-spoke RF pulses for flow quantification at 7 T with controlled displacement artifacts has been successfully demonstrated. The presented techniques form the basis for correct velocity quantification and compensation not only for conventional but also for multi-spoke RF pulses allowing in-plane B1+ homogenization using parallel transmission at UHF.  相似文献   

15.
A free induction signal (FIS) after excitation of a two-level inhomogeneously broadened spin system by a sequence of n electromagnetic pulses of the same duration t 1 and with the same intervals between them is investigated theoretically and experimentally. It has been established that an FIS develops n coherent oscillations of magnetization, whose phases change in time following definite laws. These oscillations arise after cessation of the nth pulse and terminate successively at times that are multiple of t 1, thus increasing the FIS duration. The conclusion has been drawn on the validity of the theorem of coherent transient processes on multipulse excitation of two-level spin systems with a finite inhomogeneous line width. The theoretical results are in fairly good agreement with the experimental data obtained in the NMR of protons in glycerin.  相似文献   

16.
The total (p, n) reaction cross section for48Ca has been measured as a function of proton energy in the energy range 1.885 to 5.100 MeV with an overall resolution of ∼ 2 keV and in ∼ 5 keV energy steps. The fluctutions in fine resolution data have been analysed to determine the average coherence width 〈Γ〉. The excitation function averaged over large energy intervals has been analyzed in terms of the optical model. The isobaric analogue resonances atE p ∼ 1.95 and 4 MeV have been shape-analyzed to extract the proton partial width and the spectroscopic factorS n . A comparison of the gross structures observed in ∼ 55 keV averaged excitation function with the predictions of Izumo’s partial equilibrium model has also been made.  相似文献   

17.
We propose a method of slice selection in solid-state MRI by combining DANTE selective excitation with magic-echo (ME) line narrowing. The DANTE RF pulses applied at the ME peaks practically do not interfere with the ME line narrowing in the combined ME DANTE sequence. This allows straightforward tailoring of the slice profile simply by introducing an appropriate modulation, such as a sinc modulation, into the flip angles of the applied DANTE RF pulses. The utility of the method has been demonstrated by preliminary experiments performed on a test sample of adamantane.  相似文献   

18.
Semiconductor response to ultrafast electric pulses was investigated both theoretically and experimentally. The possibilities for hot-electron drift velocity estimation from a pulsed electric conductivity measurement were analysed. An optoelectronic arrangement with time resolution of 20 ps was used to perform such measurements on then-InSb andn-InAs single crystals. Negative differential mobility (n.d.m.) was observed in both semiconductors at high electric fields.  相似文献   

19.
The construction of a high quality MR RF-antenna with incorporated EEG electrodes for simultaneous MRI and EEG acquisition is presented. The antenna comprises an active decoupled surface coil for receiving the MR signal and a whole body coil for transmitting the excitation RF pulses. The surface coil offers a high signal-to-noise ratio required for fMRI application and the whole body coil has a good B(1) excitation profile, which enables the application of homogeneous RF pulses. Non-invasive carbon electrodes are used in order to minimise the magnetic susceptibility artefacts that occur upon application of conductive materials. This dedicated set-up is compared to a standard set-up being a linear birdcage coil and commercially available Ag/AgCl electrodes. As the acquired EEG signals are heavily disturbed by the gradient switching, intelligent filtering is applied to obtain a clean EEG signal.  相似文献   

20.
The nonlinearity of the parameter relations for the Shinnar–Le Roux RF pulse design algorithm has induced to performa classification based on the features of the slice profile dueto the RF pulse. In the present paper a generalization ofthe relation between the ripple amplitudes of the SLRBpolynomial and those of the slice profile is given. It allows generation of RF pulses with better slice profiles and slightly reduced energy, avoiding anya prioriclassification. The effect of our estimation has been shown by generating several pulses by generalized estimation ofBpolynomial ripples. In addition, their behavior has been compared to that of analogous pulses generated by means of the classification just mentioned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号