首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrochemical behavior of K3[Fe(CN)6] was studied on an ITO electrode that was coated with β‐cyclodextrin (CD) modified multi‐walled carbon nanotubes (MWNTs) and with carboxyl modified multi‐walled carbon nanotubes (MWNT‐COOHs). MWNT‐COOHs showed an excellent electrocatalytic effect on the redox of K3[Fe(CN)6] while MWNT‐CDs had a subdued effect on the electrochemical response of K3[Fe(CN)6]. It is probably due to mismatching between K3[Fe(CN)6] and cyclodextrin, which hampers the contact of K3[Fe(CN)6] with carbon nanotubes. Moreover, the electrochemical behavior of K3[Fe(CN)6] on the MWNT‐COOHs coated ITO electrode at various scan rates also was measured. The results indicated that both potential difference between redox peaks and peak current of K3[Fe(CN)6] increased with increasing scan rate. A good linearity of peak current versus scan rate was observed.  相似文献   

2.
A novel electrochemical DNA-based biosensor for the detection of deep DNA damage was designed employing the bionanocomposite layer of multiwalled carbon nanotubes (MWNT) in chitosan (CHIT) deposited on a screen printed carbon electrode (SPCE). The biocomponent represented by double-stranded (ds) herring sperm DNA was immobilized on this composite using layer-by-layer coverage to form a robust film. Individual and complex electrode modifiers are characterized by a differential pulse voltammetry (DPV) with the DNA redox marker [Co(phen)(3)](3+), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) with [Fe(CN)(6)](3-) as a redox probe in a phosphate buffer solution (PBS). A good correlation between the CV and EIS parameters has been found, thus confirming a strong effect of MWNT on the enhancement of the electroconductivity of the electrode surface and that of CHIT on the MWNT distribution at the electrode surface. Differences between the CV and EIS signals of the electrodes without and with DNA are used to detect deep damage to DNA, advantageously using simple working procedures in the same experiment.  相似文献   

3.
采用修饰单壁碳纳米管(SWNT、SWNT-COOH或SWNT-OH)及多壁碳纳米管(MWNT、MWNT-COOH或MWNT-OH)的石墨电极研究配位阴离子[Fe(CN)6]3-和配位阳离子[Co(phen)3]3+的电化学行为与吸附性能,借助[Co(phen)3]3+在碳纳米管(CNT)的强吸附特性制备[Co(phen)3]3+/CNT/C修饰电极,以其应用于6-MP的分析检测.结果表明:1)在CNT修饰电极上[Fe(CN)6]3-/4-呈现很好的氧化还原可逆性,而[Co(phen)3]3+则显示明显的吸附控制特征.2)[Co(phen)3]3+在多壁碳纳米管修饰电极上的吸附量较单壁碳纳米管大,但经羧基化或羟基化后,吸附量减小,而且在羧基化表面的吸附量较羟基化的大.3)[Co(phen)3]3+与6-MP间存在明显的相互作用,其配位产物的还原峰电流与6-MP浓度呈线性关系.  相似文献   

4.
高稳定性普鲁士蓝修饰电极的制备和研究   总被引:4,自引:0,他引:4  
采用恒电流电解方法,使用FeCl_3-K_3Fe(CN)_6和Fe~(?)L_(?) -K_3Fe(CN)_6(L,邻菲绕啉,EDTA,5-磺基水杨酸等)两体系,在玻碳和铂基体上均制得高稳定性普鲁士蓝膜。用循环伏安法在lmol·dm~(-3)KCl(pH4)溶液中,重点地在0.6--1.1V(vs.Ag/AgCl)区间研究了膜的电化学稳定性。在玻碳基体上FeCl_3,-K_3Fe(CN)_6和Pe~(?)·L_(?) -K_3Fe(CN)_6体系电积膜分别可经受10~(?)周和2×10~(?)周扫描。在铂基体上则可分别经受2×10~(?)和7×10~(?)周扫描。红外和X-射线衍射证明两体系制得的膜均为普鲁士蓝膜,稳定性的明显差异是由于普鲁士蓝晶粒度的不同和在基体表面的相对取向不同引起的。对影响膜的稳定性的因素作了较系统的研究。  相似文献   

5.
We report a simple and effective strategy for fabrication of the nanocomposite containing chitosan (CS) and multiwall carbon nanotube (MWNT) coated on a glassy carbon electrode (GCE). The characterization of the modified electrode (CS‐MWNT/GC) was carried out using scanning electron microscopy (SEM) and UV–vis absorption spectroscopy. The electrochemical behavior of CS‐MWNT/GC electrode was investigated and compared with the electrochemical behavior of chitosan modified GC (CS/GC), multiwalled carbon nanotube modified GC (MWNT/GC) and unmodified GC using cyclic voltammetry (CV) and electron impedance spectroscopy (EIS). The chitosan films are electrochemically inactive; similar background charging currents are observed at bare GC. The chitosan films are permeable to anionic Fe(CN)63?/4? (FC) redox couple. Electrochemical parameters, including apparent diffusion coefficient for the Fe(CN)63?/4? redox probe at FC/CS‐MWNT/GC electrode is comparable to values reported for cast chitosan films. This modified electrode also showed electrocatalytic effect for the simultaneous determination of D‐penicillamine (D‐PA) and tryptophan (Trp). The detection limit of 0.9 μM and 4.0 μM for D‐PA and Trp, respectively, makes this nanocomposite very suitable for determination of them with good sensitivity.  相似文献   

6.
Polyelectrolyte multilayer thin films were prepared by an alternate deposition of poly(allylamine hydrochloride) (PAH) and anionic polysaccharides {carboxymethylcellulose (CMC) and alginic acid (AGA)} on the surface of a gold (Au) disk electrode, and the binding of ferricyanide [Fe(CN)(6)](3)(-) and hexaammine ruthenium ions [Ru(NH(3))(6)](3+) to the films was evaluated. Poly(acrylic acid) (PAA) was also employed as a reference polyanion bearing carboxylate side chains. A quartz-crystal microbalance study showed that PAH-CMC and PAH-AGA multilayer films grow exponentially as the number of depositions increases. The thicknesses of five bilayers of (PAH-CMC)(5) and (PAH-AGA)(5) films were estimated to be 150 +/- 20 and 90 +/- 15 nm, respectively, in the dry state. The PAH/polysaccharide multilayer film-coated Au electrodes exhibited a redox response to the [Fe(CN)(6)](3)(-) ion dissolved in solution, irrespective of the sign of the surface charge of the film, suggesting the high permeability of the films to the [Fe(CN)(6)](3)(-) ion. In contrast, the PAH-PAA film-coated Au electrodes exhibited a redox response only when the outermost surface of the film was covered with a positively charged PAH layer. However, the permeation of the [Ru(NH(3))(6)](3+) cation was severely suppressed for all of the multilayer films. It was possible to confine the [Fe(CN)(6)](3)(-) ion in the films by immersing the film-coated electrodes in a 1 mM [Fe(CN)(6)](3)(-) solution for 15 min. Thus, the [Fe(CN)(6)](3)(-)-confined electrodes exhibited a cyclic voltammetric response in the [Fe(CN)(6)](3)(-) ion-free buffer solution. The loading of the [Fe(CN)(6)](3)(-) ion in the films was higher when the surface charge of the film was positive and increased with increasing film thickness. It was also found that the [Fe(CN)(6)](3)(-) ion confined in the films serves as an electrocatalyst that oxidizes ascorbic acid in solution.  相似文献   

7.
Arylmethyl films have been grafted to glassy carbon surfaces and to pyrolyzed photoresist films (PPFs) by electrochemical oxidation of 1-naphthylmethylcarboxylate and 4-methoxybenzylcarboxylate. Atomic force microscopy (AFM) and electrochemistry were used to characterize the as-prepared films and to monitor changes induced by post-preparation treatments. Film thickness was measured by depth profiling using an AFM tip to remove film from the PPF surface. Surface coverage of electroactive modifiers was estimated from cyclic voltammetry, and monitoring the response of a solution-based redox probe at grafted surfaces gave a qualitative indication of changes in film properties. For preparation of the films, the maximum film thickness increased with the potential applied during grafting, and all films were of multilayer thickness. The apparent rate of electron transfer for the Fe(CN)(6)3-/Fe(CN)(6)4- couple was very low at as-prepared films. After film-grafted electrodes were transferred to pure acetonitrile-electrolyte solution and subjected to negative potential excursions, the response of the Fe(CN)(6)3-/Fe(CN)(6)4- couple changed and was consistent with faster electron-transfer kinetics, the film thickness decreased and the surface roughness increased substantially. Applying a positive potential to the treated film reversed changes in film thickness, but the voltammetric response of the Fe(CN)(6)3-/Fe(CN)(6)4- couple remained kinetically fast. After as-prepared films were subjected to positive applied potentials in acetonitrile-electrolyte solution, the apparent rate of electron transfer for the Fe(CN)(6)3-/Fe(CN)(6)4- couple remained very slow and the measured film thickness was the same or greater than that before treatment at positive potentials. Mechanisms are considered to explain the observed effects of applied potential on film characteristics.  相似文献   

8.
研究了掺杂多壁碳纳米管(MWNT)改性聚溴甲酚绿膜(PBG),以不同修饰方法制备了4种修饰电极,用扫描电镜、交流阻抗及循环伏安法等对电极进行表征。结果表明:4种修饰电极的电活化面积均得到明显提高,其中以层层修饰制备的聚溴甲酚绿膜/多壁碳纳米管复合膜(PBG/MWNT/GC)电极最能发挥MWNT和PBG的电活性。将电极用于8-羟基喹啉(8-HQ)电化学行为的研究,结果表明:4种修饰电极的伏安响应明显提高,且8-HQ在PBG/MWNT/GC上的氧化峰电位负移最多,峰电流最大,约为裸玻碳电极的4.5倍,电催化作用显著增强。8-HQ在PBG/MWNT/GC上电极反应的电子转移数和质子数均为1,是吸附控制的不可逆电氧化过程,氧化峰电流Ip与浓度c在4.0×10-6~3.5×10-4mol/L范围内呈良好的线性关系,r=-0.997 2,检出限(S/N=3)为1.96×10-8mol/L。PBG/MWNT/GC修饰电极可实现8-HQ的快捷、简便测定。  相似文献   

9.
《Electroanalysis》2006,18(16):1627-1630
The surface of a gold (Au) electrode was coated with layer‐by‐layer (LbL) thin films composed of poly(vinyl sulfate) (PVS) and different type of poly(amine)s including poly(allylamine) (PAH), poly(ethyleneimine) (PEI) and poly(diallyldimethylammonium chloride) (PDDA) and redox properties of ferricyanide ion ([Fe(CN)6]3?) on the LbL film‐coated Au electrodes were studied. The LbL film‐coated electrodes exhibited redox response to [Fe(CN)6]3? ion when the outermost surface of the LbL film was covered with the cationic poly(amine)s while virtually no response was observed on the LbL film‐coated electrodes whose outermost surface was covered with PVS due to an electrostatic repulsion between [Fe(CN)6]3? ion and the negatively‐charged PVS layer. The redox properties of [Fe(CN)6]3? ion on the LbL film‐coated electrodes significantly depended on the type of polycationic materials in the LbL film. The LbL film‐coated electrodes which had been immersed in the [Fe(CN)6]3? solution for 15 min exhibited redox response even in a [Fe(CN)6]3? ion‐free buffer solution, suggesting that [Fe(CN)6]3? ion is confined in the films. In the buffer solution, redox peaks were observed between +0.1 and 0.4 V depending on the type of polycations in the film. Thus, [Fe(CN)6]3? ion can be confined in the film and the redox potential is polycation‐dependent.  相似文献   

10.
Redox reactions of ferricyanide ions, [Fe(CN)6]3-, in polysaccharide thin films that were prepared by layer-by-layer (LbL) deposition on the surface of a gold electrode were studied electrochemically by cyclic voltammetry. LbL films composed of alginic acid (AGA) and carboxymethylcellulose (CMC) were successfully prepared using poly(ethyleneimine) (PEI) and poly(diallyldimethylammonium chloride) (PDDA) as the cationic counterparts in the electrostatic LbL deposition. The deposition behavior of the PEI-based films significantly depended on the pH of the solutions from which the LbL films were deposited, while the effects of pH were negligibly small for the PDDA-based films due to the pH-independent positive charges on the PDDA chains. The cyclic voltammograms (CVs) of [Fe(CN)6]3- ions on the LbL film-coated electrodes revealed that all the LbL films tested are permeable to [Fe(CN)6]3- ions and that the redox reactions of [Fe(CN)6]3- ions proceed smoothly in the LbL polysaccharide films. It was found that [Fe(CN)6]3- ions are concentrated in the films from the bulk solution, depending on the pH of the medium and on the type of polycations in the film. The PEI-based films concentrated [Fe(CN)6]3- ions more effectively in an acidic solution than in neutral and basic media, while the pH effect was not observed for the PDDA-based films. In addition, we found that the [Fe(CN)6]3- ions are confined in the LbL films due to a strong binding of the ions to the positively charged sites arising from the protonated amino groups in the films. The confined [Fe(CN)6]3- ions exhibited redox reactions in the films, with the redox potentials being shifted to the positive or negative direction in the PEI- or PDDA-based film, respectively, as compared to the redox potential of diffusing [Fe(CN)6]3- ions. Thus, significant effects of the type of polycation in the LbL films on the redox reactions of [Fe(CN)6]3- ions were observed.  相似文献   

11.
本文提出以金属钛为基底, 在丙酮蒸气和无催化剂条件下, 通过高温反应, 直接在金属钛片上一步合成出具有核壳结构的TiO2@C纳米纤维阵列. 由于TiO2@C纳米纤维阵列在金属钛片上分布均一, 与金属钛基底有良好的结合力和电接触性能, 可直接作为电化学传感器电极. 进一步的电化学检测表明, 该电极对铁氰化钾及多巴胺等物质有良好的电化学响应, 对多巴胺检测灵敏度高, 响应的线性范围为1.0×10-7~1.0×10-4 mol/L, 检测限达2.45×10-8 mol/L. 该电极有望在生物传感、环境分析及药物分析等领域发挥重要作用.  相似文献   

12.
Electroactive nickel(II) hexacyanoferrate (NiHCF) thin film modified electrodes are effective potentiometric sensors for the determination of potassium ions. The NiHCF films are deposited onto glassy carbon electrodes by repetitive potential cycling in K(3)Fe(CN)(6)/NaNO(3)/Ni(NO(3))(2) solution. The modified electrodes exhibit a linear response to potassium ions in the concentration range 1x10(-3) to 2.0 mol dm(-3), with a near-Nernstian slope (45-49 mV per decade) at 25 degrees C. In the determination of potassium ion in syrups used for treatment of potassium deficiency, the NiHCF-modified electrode gave comparable results to those obtained using flame emission spectrophotometry.  相似文献   

13.
Phenylboronic acid monolayer-modified electrodes sensitive to sugars   总被引:3,自引:0,他引:3  
The surface of a gold (Au) electrode was modified with 4-mercaptophenylboronic acid (MPBA) and dithiobis(4-butyrylamino-m-phenylboronic acid) (DTBA-PBA) to prepare sugar-sensitive electrodes. MPBA and DTBA-PBA formed well-packed monomolecular layers on the Au electrode through a sulfur-Au bond. The MPBA- and DTBA-PBA-modified electrodes exhibited a nearly reversible cyclic voltammogram (CV) for the Fe(CN)(6)(3-)(/4-) ion in acidic solution, while the CVs were significantly attenuated in alkaline media as a result of addition of OH(-) ion to the boron atom to generate the negatively charged surface. In other words, the negatively charged monolayers blocked the surface of the Au electrode from the access of the Fe(CN)(6)(3-)(/4-) ion. The pK(a) values of the addition equilibrium of the OH(-) ion to the MPBA and DTBA-PBA monolayers were estimated to be 9.2 +/- 0.1 and 8.0 +/- 0.2, respectively, on the basis of the pH-dependent peak current (i(p)) in the CV of the Fe(CN)(6)(3-)(/4-) ion. On the other hand, in the presence of sugars, the addition of the OH(-) ion was accelerated by forming the phenylboronate esters of sugars on the surface of the monolayers. The pK(a) values for the MPBA and DTBA-PBA monolayers were 8.3 +/- 0.1 and 7.2 +/- 0.1, respectively, in the presence of 50 mM D-fructose. The MPBA- and DTBA-PBA-modified electrodes can be used for determining sugars on the basis of the change in i(p) of the Fe(CN)(6)(3-)(/4-) ion in the presence of sugars. The calibration curves useful for determining 1-100 mM D-glucose, D-mannose, and D-fructose were obtained.  相似文献   

14.
The electrochemical impedance of thin-film electrodes made of amorphous nitrogen-containing diamondlike carbon (a-C:N:H) in H2SO4 solutions and the kinetics of redox reactions on these electrodes in the Fe(CN) 6 3-/4- system are studied. The amorphous diamondlike carbon films with an admixture of nitrogen are grown by a directed deposition from inductively coupled methane-nitrogen plasma. The films’ resistivity values determined from the ac impedance of a-C:N:H/electrolyte contact practically coincided with those determined from the current-vol.tage curves taken at the a-C:N:H/metal contact. With an increase in the nitrogen : methane ratio in the gas phase, both the electrical resistance and optical bandgap decrease from 3 x 1010 to 5 x 106 ohm cm and from 1.3 to 0.6 eV, respectively. Simultaneously, the concentration of electrically active point-defect centers in a-C:N:H increases significantly and the reaction in the Fe(CN) 6 3-/4- system is facilitated.  相似文献   

15.
Graphene modified electrodes have been fabricated by electrodeposition from an aqueous graphene oxide solution onto conducting Pt, Au, glassy carbon, and indium tin dioxide substrates. Detailed investigations of the electrochemistry of the [Ru(NH(3))(6)](3+/2+) and [Fe(CN)(6)](3-/4-) and hydroquinone and uric acid oxidation processes have been undertaken at glassy carbon and graphene modified glassy carbon electrodes using transient cyclic voltammetry at a stationary electrode and near steady-state voltammetry at a rotating disk electrode. Comparisons of the data with simulation suggest that the transient voltammetric characteristics at graphene modified electrodes contain a significant contribution from thin layer and surface confined processes. Consequently, interpretations based solely on mass transport by semi-infinite linear diffusion may result in incorrect conclusions on the activity of the graphene modified electrode. In contrast, steady-state voltammetry at a rotating disk electrode affords a much simpler method for the evaluation of the performance of graphene modified electrode since the relative importance of the thin layer and surface confined processes are substantially diminished and mass transport is dominated by convection. Application of the rotated electrode approach with carbon nanotube modified electrodes also should lead to simplification of data analysis in this environment.  相似文献   

16.
三种碳基电极材料的电化学性质对比研究(英文)   总被引:1,自引:0,他引:1  
对硼掺杂纳米金刚石(BDND),硼掺杂微米金刚石(BDMD)和玻碳(GC)电极的电化学性质做了对比研究.利用扫描电子显微镜表征了BDMD和BDND电极,其表面粒子大小分别为1-5μm和20-100nm.利用Raman光谱对两种金刚石薄膜的成分进行了表征,结果表明利用热丝化学气相沉积法得到了高质量的BDND和BDMD薄膜.采用0.5mol·L-1H2SO4溶液测定了三种电极的电化学窗口,BDND和BDMD电极的电化学窗口分别为3.3和3.0V,远比GC电极(2.5V)的要宽.[Fe(CN)6]3-/[Fe(CN)6]4-溶液的循环伏安和交流阻抗测定表明,在BDND、BDMD和GC电极上的峰间距(△Ep)分别为73、92和112mV,且其电子传递电阻(Ret)分别为(98±5)、(260±19)和(400±25)Ω.我们也研究了0.1mmol·L-1双酚A在三种电极上的电化学氧化行为.上述的电化学测定结果表明,两种金刚石电极均比GC电极表现出了更宽的电化学窗口、更好的电化学可逆性质、更快的电子传递速度和更高的电化学稳定性,更为重要的是与BDMD相比BDND的电化学性质有进一步的提高.  相似文献   

17.
We describe a novel instrument and electrical circuit for sensitive electrochemical measurements at simultaneous direct electrode heating. The new measuring principle can be applied to working electrodes of various designs featuring two end contacts. In our experiments, the contacts were connected to a 100 kHz AC heating power supply and the potentiostat via the new inductor bridge circuit. A compact heating‐generator housing contains all components necessary for sine wave generation as well as amplification and transformation of the heating power. The new arrangement yields high temperature cyclovoltammetric signals for the [Fe(CN)6]3?/4? redox system with a noise level superior to the earlier symmetrically branched wire electrode designs. Noise and disturbances are dramatically suppressed especially for high resistance electrodes such as glassy carbon electrodes. Without a center contact, the working electrode design is greatly simplified. This opens new opportunities for the design of a great variety of heated electrodes that may be arranged in arrays or consist of materials with relatively high resistivity such as carbon and conducting polymers.  相似文献   

18.
涂丝电极问世已有十多年,可用于离子选择性场效应管[1]、高效液相色谱检测器[2],但稳定性差。一般认为涂丝电极的金属与PVC膜之间的电子传递是由不可逆电对Pt|O2,H2O所引起[3],因此可以认为,这一电对的不可逆性以及在使用过程中O2、H2O活度的变化是造成涂丝电极稳定性差的根本原因。  相似文献   

19.
To decrease the consumption of fossil fuels, research has been done on utilizing low grade heat, sourced from industrial waste streams. One promising thermoenergy conversion system is a thermogalvanic cell; it consists of two identical electrodes held at different temperatures that are placed in contact with a redox-based electrolyte [1, 2]. The temperature dependence of the direction of redox reactions allows power to be extracted from the cell [3, 4]. This study aims to increase the power conversion efficiency and reduce the cost of thermogalvanic cells by optimizing the electrolyte and utilizing a carbon based electromaterial, reduced graphene oxide, as electrodes. Thermal conductivity measurements of the K3Fe(CN)6/K4Fe(CN)6 solutions used, indicate that the thermal conductivity decreases from 0.591 to 0.547?W/m?K as the concentration is increased from 0.1 to 0.4?M. The lower thermal conductivity allowed a larger temperature gradient to be maintained in the cell. Increasing the electrolyte concentration also resulted in higher power densities, brought about by a decrease in the ohmic overpotential of the cell, which allowed higher values of short circuit current to be generated. The concentration of 0.4?M K3Fe(CN)6/K4Fe(CN)6 is optimal for thermal harvesting applications using R-GO electrodes due to the synergistic effect of the reduction in thermal flux across the cell and the enhancement of power output, on the overall power conversion efficiency. The maximum mass power density obtained using R-GO electrodes was 25.51?W/kg (three orders of magnitude higher than platinum) at a temperature difference of 60?°C and a K3Fe(CN)6/K4Fe(CN)6 concentration of 0.4?M.  相似文献   

20.
Liquid crystalline/polymer composite membrane-coated electrodes were prepared by casting a 1,2-dichloroethane solution of N-(4-ethoxybenzylidene)-4′-n-butylaniline (EBBA) and polycarbonate (PC) on an electrode surface. The temperature-dependence of the permeability of the EBBA/PC composite membrane on electrodes to Fe(CN)3?6 ion as a solution-phase redox ion was investigated by means of hydrodynamic voltammetry at a rotating disk electrode. The permeability changed with temperature over the range of the crystalline-nematic-phase transition temperature of EBBA. It is demonstrated that the observed temperature-dependence of the permeability reflects the thermotropic properties of EBBA in the EBBA/PC composite membrane. Furthermore, the dependence of the limiting current of the steady-state current-potential curves for the reduction of Fe(CN)6 at the EBBA/PC composite membrane-coated electrode upon the membrane thickness, the blend ratio of EBBA and PC and the concentration of Fe(CN)3?6 in a bulk solution was examined in order to understand the transport process of Fe(CN)?36 through the EBBA/PC composite membrane from the membrane/solution interface to the electrode/membrane interface. The transport process of Fe(CN)3?6 within the membrane was found to obey Fick's Law.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号