首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
喷嘴内部流道型线对射流流场的影响   总被引:27,自引:0,他引:27  
为研究喷嘴内部流道型线对射流流场的气体动特性参数的影响,根据可压缩流体轴对称N-S方程,利用RNGκ-ε湍流模式和有限体积法,并采用四边形非结构网格,对不同内部流道型线的喷嘴自由射流进行数值模拟。对于轴对称等直径圆管喷嘴,进口处的流道型线对射流流道参数的分布有较大的影响;轴对称收缩喷嘴的收缩角大小主要影响射流出口附近的流动,对流动具有不同的阻滞效果。计算结果与实验吻合较好,若要获得较佳的外部流场参数,优化喷嘴内部流道设计十分重要。  相似文献   

2.
实验研究了3毫米口径轴对称收缩喷嘴在各种压比下射流垂直冲击和倾斜冲击坚固大平板产生的噪声的指向特性。发现噪声在过平板法线和喷嘴轴线的平面内呈近似四瓣分布,当喷嘴与平板距离减小时,指向壁射流下游的瓣得到增强,反之,指向喷嘴上游的瓣得到增强。喷嘴压比增加时,指向壁射流下游的瓣得到增强,反之,指向喷嘴上游的瓣得到增强。根据自由射流噪声的基本指向特性、射流冲击噪声基本指向特性、声波在平板处发生镜面反射和声波能量叠加的设定,建立了一个冲击射流总体噪声指向特性的模型,成功解释了实验结果,并揭示了形成冲击射流总体噪声指向特性的内在机理。  相似文献   

3.
基于对超高压水射流喷头的外部参数定量化分析,给出关于射流核心参数的优选方法,旨在提高水射流效率。首先,根据超高压水射流除锈喷嘴的工作特点,考虑到水的压缩性和空化效应,建立单束定冲角、多束旋转喷头的三维数值模型,通过改变靶距、入射角度、转速等外部特征参数,实施了超高压水射流除锈喷头水动力性能模拟研究。然后,重点分析单束定冲角喷嘴靶距、入射角度对靶面剪切应力、打击压强分布的影响,以及射流等速核长度与最佳射流靶距的关系。发现当靶距等于喷嘴射流等速核长度时,壁面剪切应力达到最佳水平。此外,通过分析高速旋转射流卷吸效应、靶面水垫作用对靶面所受剪切应力、打击压强分布的影响,得到最佳转速范围和对应线速度。初步阐明了射流冲击剥离的机理、单束定冲角以及多束旋转射流的特征参数对射流效果的影响,可为超高压除锈喷头的设计、装配提供参考。  相似文献   

4.
超临界二氧化碳(CO2)射流破岩既能降低岩石门限压力又能有效保护储层,直旋混合射流兼具直射流和旋转射流特点可提高破岩效率,基于此提出了超临界CO2直旋混合射流的破岩方法。为了揭示超临界CO2直旋混合射流破岩特性,设计加工出叶轮式直旋混合射流喷嘴,通过岩石定点冲击破碎实验对比了该射流与常规水射流的破岩效果,并研究了叶轮长度、叶轮中心孔直径、混合腔长度、喷射距离、射流压力等重要参数对超临界CO2直旋混合射流破岩效果的影响。结果表明:相同实验条件下,该射流方法的平均破岩能力比常规水射流提高了42.9%;超临界CO2直旋混合射流破岩易出现较大体积岩屑崩落现象;随着叶轮长度、混合腔长度、喷射距离的增大破岩效果均先增强后减弱,实验条件下上述参数存在最优范围值;叶轮中心孔直径的增大会导致岩石破碎孔深度增加、直径减小;随着射流压力的升高,超临界CO2直旋混合射流破岩效果有着较为明显的提升。研究结果可为超临界CO2直旋混合射流破岩方法的进一步研究提供实验依据。  相似文献   

5.
为研究小口径喷嘴冲击射流的噪声特性,测定了3mm口径的轴对称收缩喷嘴在各种压比情况下产生的亚音速和超音速射流冲击坚固大平板产生的噪声。发现噪声在空间呈近似四瓣分布,当喷嘴与平板距离减小时,噪声指向壁射流下游的瓣到增强,反之,噪声指向喷嘴上游的瓣得到增强。噪声随喷嘴距平板距离的增加呈增强的趋势,在距平板一定距离内有锯齿现象。噪声随喷嘴压比的增加而增强,相应于各种工况,存在一不同的压比值,此压比之前,噪声随压比的增大而迅速提高,但有起伏现象,在此压比之后,噪声平缓地随压比的增大而增强。  相似文献   

6.
气枪喷嘴高速射流的除水效率研究   总被引:2,自引:0,他引:2  
为揭示喷嘴除水的机理并进而对气枪喷嘴进行改进和优化设计,本文提出了利用图像分析处理对小尺度气枪喷嘴高速冲击乘风破浪的除水效率的研究方法。该方法将有效除水面积作为衡量喷嘴除水效率的标准,从面实现了对喷嘴整体除水效率的定量测量,并利用该方法对影响气枪喷嘴除水效率的各种因素(一次侧压力,喷嘴到平板的距离和射流攻角)进行了研究,并将实验结果与用热线风速仪及总压探头测量的结果进行了比较,得到冲击射流在平板水平速度分量是蚊蝇 嘴除尘除水效率的决定性因素等结论。  相似文献   

7.
王晓英  闻建龙 《实验力学》2013,28(3):347-351
本文分析了静电雾化锥射流模式下液锥表面静电应力、表面张力应力分布特性,基于应力平衡建立了液锥力学模型,并对流量、荷电电压及针形喷嘴的内半径等参数对液锥结构形态的影响进行了预测。首先设计了针形喷嘴静电雾化实验装置,应用高速摄影技术观测了静电雾化的典型雾化模式和液锥形态演化特性。实验结果表明:锥射流雾化模式仅在一定的荷电电压范围内才会出现;针形喷嘴的流量增加,液锥锥角减小,液锥长度增长;随着荷电电压或针形喷嘴内半径的增加,液锥锥角增大,液锥长度缩短。实验结果与液锥力学模型的预测结果一致。  相似文献   

8.
自激振荡脉冲射流喷嘴装置系统频率特性理论研究   总被引:5,自引:1,他引:4  
根据相似系统原理和流体网络理论建立了自激振荡脉冲射流喷嘴装置的等效网络模型,利用系统传递函数推导了系统频率特性方程并进行了数值计算。结果表明:喷嘴装置的固有频率主要由喷嘴形状、结构参数、入口流速、射流中压力扰动波波速决定;自激振荡腔腔径、自激振荡腔腔长、上喷嘴直径、下喷嘴直径都对系统频率特性影响很大。提出了相应的自激振荡脉冲射流喷嘴设计准则,即喷嘴装置在最佳阻尼比下产生谐波共振。  相似文献   

9.
易灿  李根生  陈日吉 《实验力学》2005,20(2):291-296
自振空化射流是利用瞬态流和水声学原理调制而成的一种新型射流,为研究围压下自激振荡空化射流的冲蚀破碎规律,利用高压釜装置测量了1.0mm出口直径的风琴管自振空化喷嘴在各种射流参数情况下冲蚀铝试样的冲蚀质量,并与同等条件下锥形喷嘴冲蚀效率进行了对比。测量结果表明,冲蚀质量基本与射流压力成正比;存在最优喷距和围压,使得冲蚀效果最佳,在本实验条件,分别为喷嘴出口直径的5~7倍和2MPa左右;相同条件下,自振空化喷嘴冲蚀质量约为同等条件下锥形喷嘴冲蚀的1~2倍,这为自振空化射流提高钻井速度等实际应用提供了实验依据。  相似文献   

10.
运用自行研制的试验装置对淹没条件下的自激吸气式脉冲射流喷嘴特性进行了大量的试验,研究了吸气对喷嘴内的压力变化和脉冲射流峰值打击力的影响。通过研究淹没条件下10-16-125-75和8-14-85-60结构参数喷嘴在不同吸气根数下的腔套内各测点压力及峰值打击力的变化,得出不同结构喷嘴的压力和峰值打击力随吸气量的增大而逐渐提高,存在最优吸气量使脉冲射流峰值打击力最大。通过研究淹没条件下结构参数分别为8-14-85-60、10-16-105-75、14-28-125-105的喷嘴在不吸气及吸气根数为4情况下的射流峰谷差及峰值打击力,得出三种喷嘴在吸气时的射流峰值打击力分别提高45%~78%、40%~46%、22%~38%。研究表明:对于不同结构参数喷嘴,吸气可提高射流压力波动值和峰值打击力,随上喷嘴直径和振荡腔内容积的增大,该吸气方式对射流打击力的提高程度呈减小趋势。结果对进一步研究淹没条件下自激吸气式脉冲射流喷嘴特性具有指导意义。  相似文献   

11.
In the present study, a jet superposition modeling approach is explored to model group-hole nozzle sprays, in which multiple spray jets interact with each other. An equation to estimate the merged jet velocity from each of the individual jets was derived based on momentum conservation for equivalent gas jets. Diverging and converging group-hole nozzles were also considered. The model was implemented as a sub-grid-scale submodel in a Lagrangian Drop–Eulerian Gas CFD model for spray predictions. Spray tip penetration predicted using the present superposition model was validated against experimental results for parallel, diverging and converging group-hole nozzles as a function of the angle between the two holes at various injection and ambient pressures. The results show that spray tip penetration decreases as the group hole diverging or converging angle increases. However, the spray penetration of the converging group-hole nozzle arrangement is more sensitive to the angle between the two holes compared to diverging nozzle because the radial momentum component is converted to axial momentum during the jet–jet impingement process in the converging group-hole nozzle case. The modeling results also indicate that for converging group-hole nozzles the merged sprays become ellipsoidal in cross-section far downstream of the nozzle exit with larger converging angles, indicating increased air entrainment.  相似文献   

12.
The method of thrust vector deflection by means of displacing the critical surface of a nozzle is numerically and experimentally investigated. The displacement is realized at the expense of extending rotatable walls, or deflectors, into the flow; in this case, one of the edges of the critical surface is displaced from the throat onto the deflector surface. Two nozzle configurations, with short and long deflectors, are studied. The thrust vector deflection angles and the nozzle thrust coefficients are determined in the thrust vector deflection regime. For the configuration with long deflectors the angle of rotation of the thrust vector amounts to 30° and is determined by the effect of jet ejection toward the opposite wall, similar with the Coanda effect.  相似文献   

13.
A high-speed and initial helium jet flow has been analyzed by a developed four-dimensional digital speckle tomography. Multiple high-speed cameras have been used to capture movements of speckles in multiple angles of view simultaneously because a shape of a nozzle for the jet flow is asymmetric and the initial jet flow is fast and unsteady. The speckle movements between no flow and helium jet flow from the asymmetric nozzle controlled by a solenoid valve have been obtained by a cross-correlation tracking method so that those distances can be transferred to deflection angles of laser rays for density gradients. The four-dimensional density fields for the high-speed helium jet flow have been reconstructed from the deflection angles by a developed real-time tomography method.  相似文献   

14.
The two dimensional impinging circular twin-jet flow with no-cross flow is studied numerically and experimentally. The theoretical predications are carried out through numerical procedure based on finite volume method to solve the governing mass, momentum, turbulent kinetic energy and turbulent kinetic energy dissipation rate. The parameters studied were jet Reynolds number (9.5 × 104  Re  22.4 × 104), nozzle to plate spacing (3  h/d  12), nozzle to nozzle centerline spacing (l/d = 3, 5 and 8) and jet angle (0°  θ  20°). It is concluded that the stagnation primary point moves away in the radial main flow direction by increasing the jet angle. This shift becomes stronger by increasing the nozzle to nozzle centerline spacing (l/d). A secondary stagnation point is set up between two jets. The value of pressure at this point decreases by decreasing Reynolds number and/or increasing the jet angle.

The sub atmospheric region occurs on the impingement plate. It increases strongly by increasing Reynolds number and decreases as the jet angle and/or a nozzle to plate spacing increases. The spreading of jet decreases by increasing nozzle to plate spacing. The intensity of re-circulation zone between two jets decreases by increasing of h/d and jet angle. The increase of turbulence kinetic energy occurs within high gradient velocity.  相似文献   


15.
A free surface shape of a viscous liquid jet is investigated at large Reynolds and Weber numbers. The jet is ejected into a vacuum from a cylindrical nozzle with a flat exterior surface. The liquid is completely wetting the nozzle material (zero contact angle). Free jet surface is non-cylindrical near the nozzle. There is a smooth connection between the flat external surface of the nozzle and the cylindrical surface of the jet away from the nozzle. The size of the connection region is estimated by means of the boundary layer technique.  相似文献   

16.
In this research the fluid dynamics characteristics of a stellar turbulent jet flow is studied numerically and the results of three dimensional jet issued from a stellar nozzle are presented. A numerical method based on control volume approach with collocated grid arrangement is employed. The turbulent stresses are approximated using kε and kω models with four different inlet conditions. The velocity field is presented and the rate of decay at jet centerline is noted. Special attention is drawn on the influence of corner angle and number of wings on mixing in stellar cross section jets. Stellar jets with three; four and five wings and 15–65° corner angles are studied. Also the effect of Reynolds number (based on hydraulic diameter) as well as the inflow conditions on the evolution of the stellar jet is studied. The Numerical results show that the jet entrains more with corner angle 65° and five wings number. The jet is close to a converged state for high Reynolds numbers. Also the influence of the inflow conditions on the jet characteristics is so strong.  相似文献   

17.
The equations of long nonlinear waves in round jets and channels of arbitrary cross section are considered with account for the transverse acceleration of the fluid particles (Boussinesq approximation). In the general case of steady flows, the equations in the form of shallow water equations with the pressure expressed in terms of the variational derivative of the kinetic energy of a thin transverse fluid layer, have three first integrals with three arbitrary constants. Examples of solutions of the equations for solitary capillary-gravitation waves in rectangular and triangular channels are presented and compared with the higher approximations. The shape of the free boundary of the round jet is determined. In the case of outflow from a conical nozzle an analytical dependence of the jet contraction ratio on the conicity angle is obtained. The dependence is in agreement with the experimental data for angles of less than 45°.  相似文献   

18.
 A novel fluid mixing device, described elsewhere, has been shown to have a dramatic effect on the combustion characteristics of a fuel jet. The main features of the flow are the deflection of the jet between 30° and 60° from the nozzle axis and its precession about that axis. Many of the factors governing the nozzle instabilities which drive the mixing in the external field are imprecisely defined. It is the aim of the present paper to examine, in isolation from the nozzle instabilities, the influence of precession on a deflected jet as it proceeds downstream from the nozzle exit. The fluid dynamically driven phenomena within the nozzle which cause the precession are in the present investigation replaced by a mechanical rotation of a nozzle from which is emerging a jet which is orientated at an angle from the nozzle axis. By this means the effect of precession on the deflected jet can be investigated independently of the phenomena which cause the precession. The experimental data reported here has been obtained from measurements made using a miniature, rapid response four-hole “Cobra” pitot probe in the field of the precessing jet. Phase-averaged three dimensional velocity components identify the large scale motions and overall flow patterns. The measured Reynolds stresses complement the velocity data and are found to be compatible with the higher entrainment rates of the jet found in earlier investigations. Received: 8 November 1995 / Accepted: 27 September 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号