首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
以合成的两种无灰型含磷/硫化合物为润滑添加剂, 以可生物降解的菜籽油作为基础油, 用四球机研究了体系的抗磨减摩性能, 以X射线光电子能谱(XPS)和X射线吸收精细结构光谱(XANES)对所形成的摩擦膜和热膜进行了表面分析, 并初步探讨了其润滑机理. 摩擦学研究结果表明, 两种含磷/硫化合物作为菜籽油的润滑添加剂时, 具有良好的抗磨减摩性能. XPS和XANES分析结果显示, 摩擦膜和热膜主要由吸附层和反应层组成; 在表面膜中, 磷主要以磷酸盐或焦磷酸盐等形式存在, 而硫主要以硫酸盐的形式存在. 研究结果还表明, 摩擦热在两种不同添加剂的摩擦膜形成过程中发挥着不同的作用.  相似文献   

2.
PAMAM树枝状高分子自组装膜的微摩擦性能研究   总被引:4,自引:0,他引:4  
自组装超薄膜的研究是近年来的热点课题,其制备与应用已深入到各个领域.研究表明,以高分子为构筑单元的有序结构超薄膜具有优良的微摩擦性能.在微摩擦学研究中,用C60作刚性基团,提高薄膜润滑材料的承载能力,已有不少报道.Tsukruk和Perry等分别研究了由C60组装形成的单层膜的微摩擦行为.薛群基等曾尝试在脂  相似文献   

3.
金属壁与催化层一体化内翅片管状催化剂的研究   总被引:3,自引:0,他引:3  
应卫勇  龟山秀 《催化学报》1997,18(6):459-462
开发了内翅片管状金属材料经阳极氧化、封孔处理、催化剂组分负载制备金属壁与催化层一体化催化剂的制备方法。讨论了氧化膜厚度与阳极氧化时间、孔径分布与封孔处理条件,负载量与浸渍时间的关系。探讨了反应温度、孔径分布、氧化膜厚度对催化剂性能的影响,对于具有平均孔半径6 ̄8nm,厚度为36μm的催化剂。在反应温度200℃、空速2400h^-1,甲醇摩尔分数0.1的条件下,甲醇脱氢生成一氧化碳的选择性接近100  相似文献   

4.
镧-硼复合润滑添加剂的协合润滑机理   总被引:4,自引:1,他引:4  
实验室和工业试验表明,含镧的润滑添加剂二烷基二硫代磷酸镧(LaDDP)和一种有机硼酸酯(OB)具有显著的协合润滑作用,将两种化合物复合加至润滑油中,可显著改善油品的抗磨减摩性能。采用俄歇电子能谱(AES)和X射线光电子能谱(XPS)研究其协合润滑机理。结果表明,LaDDP和OB具有协合润滑作用的主要原因,除了在摩擦表面生成硫酸盐、磷酸盐、氧化镧和单质硼等表面膜起润滑作用外,更重要的是镧的存在对硼的摩擦扩散起到了“摩擦催渗”作用,使摩擦亚表面硼的含量增加,并形成La-B摩擦共渗层,进一步提高材料表面硬度,从而改善耐磨性能  相似文献   

5.
利用热天平与声发射同步测试技术研究了Co-30Cr-6Al合金中离子注入2×10~(17)Y~+/cm~2对合金氧化速率及氧化膜粘附性的影响。结果表明,1000℃氧化时,钇能降低合金的氧化速率,1100℃氧化时,由于未注钇合金形成了Al_2O_3内层膜,其氧化速率反而降低。两种氧化条件下钇都显著地改善了氧化膜的抗剥落性。尽管如此,1100℃/10h氧化后注钇合金的氧化膜于冷却过程中较未注钇合金氧化膜易于发生破裂。1100℃更长时间氧化,注钇和未注钇两种合金的氧化膜于恒温过程中即发生破裂。  相似文献   

6.
研究了稀土元素处理玻璃纤维填充金属-塑料多层复合材料在冲击载荷、干摩擦条件下的摩擦和磨损性能,并利用扫描电子显微镜(SEM)对磨损表面进行了观察和分析,结果表明,用稀土表面改性剂处理玻璃纤维表面,可以提高玻璃纤维与聚四氟乙烯之间的界面结合力,改善复合材料的界面性能,并有利于在偶件表面形成分布均匀、结合强度高的转移膜,使复合材料与偶件表面之间的对摩减轻,大幅度地降低了复合材料的磨损,从而使复合材料具有优良的摩擦性能和抗冲击磨损性能。  相似文献   

7.
采用微弧氧化法在硅酸盐电解液体系中于钛合金表面成功制备了铁氧化物膜层类Fenton催化剂。采用SEM、XRD以及XPS对所得膜层的表面形貌、晶体结构及物相组成进行表征,发现膜层中含有金红石相TiO_2(R-TiO_2),和非晶态的铁氧化物Fe_3O_4;对膜层的表面形貌分析发现电解液中加入铁氰化钾后表面粗糙度及平均孔尺寸增大。以苯酚作为目标降解物,研究了膜层类Fenton催化活性,同时研究了铁源含量、苯酚浓度、H_2O_2投料量以及pH值对膜层降解苯酚效率的影响,优化了降解条件,研究发现在pH 3.0、温度30℃、H_2O_26.0 mmol·L~(-1)、苯酚35 mg·L~(-1)及铁氰化钾含量10 g·L~(-1)的条件下降解90 min,苯酚降解效率可达90%。通过对不同温度下降解苯酚的反应动力学研究,利用阿伦尼乌斯方程得到了该膜层类Fenton降解苯酚的反应活化能Ea为96.9 kJ·mol~(-1)。最后,评价了膜层的稳定性并分析了稳定性衰减的原因。  相似文献   

8.
摩擦化学的主要研究领域及其发展趋势   总被引:35,自引:0,他引:35  
薛群基  刘维民 《化学进展》1997,9(3):311-318
本文从摩擦过程中表面产生的化学效应、干摩擦及油润滑状态下的摩擦化学三个方面评述了摩擦化学的研究内容和进展; 介绍了摩擦化学在材料制备中的应用及摩擦化学的研究方法; 对摩擦化学研究中存在的问题及其发展趋势进行了讨论。  相似文献   

9.
胡文敬  李久盛 《化学学报》2022,80(3):310-316
现代汽车工业的发展以及环保法规的日益严格对车用润滑油的性能提出了更高要求, 摩擦改进剂在提高发动机油减摩性能及燃油经济性方面发挥着重要作用. 有机钼化合物作为目前使用最为广泛的摩擦改进剂, 会增加油品热氧化沉积物的生成, 且油品氧化会导致其减摩性能下降. 针对摩擦改进剂所存在的诸如有害元素、灰分及活性吸附位点有限等问题, 设计并合成了两种双/三氮杂冠醚化合物, 将活性氮原子及长链烷基引入冠醚结构中以提高吸附性能和油溶性, 并研究其作为摩擦改进剂的减摩和抗磨性能. 结果表明, 所合成双/三氮杂冠醚能有效降低油品的摩擦系数和磨损率, 其中含有吡啶结构的三氮杂冠醚表现出更优的摩擦学性能, 可使摩擦系数和磨损率相对于基础油分别降低8.8%和42%. 机理分析表明, 所合成的双/三氮杂冠醚化合物能够在钢表面发生不同程度的吸附, 并进一步发生摩擦化学反应形成润滑保护膜, 防止滑动表面微凸体的直接接触进而改善摩擦学性能.  相似文献   

10.
以精制菜籽油为原料,天然丝光沸石为催化剂,研究了硫化菜籽油的催化合成,并借助FTIR测试技术分析了产物的化学结构. 通过四球摩擦磨损试验机考察了其摩擦学性能,同时对磨痕表面进行了XPS及显微分析,探讨了其润滑机理. 结果表明,随硫粉投料量的增大,菜籽油不饱和度逐渐降低,在丝光沸石催化下,硫化反应收率可达98%以上;含硫量从0增大到9.96%,硫化菜籽油的摩擦学性能明显提升,摩擦系数由0.085降为0.025,磨斑直径由0.56 mm降至0.42 mm,最大无卡咬负荷(PB值)由549 N升至745 N,烧结负荷(PD值)由1 960 N升至2 254 N;其润滑机理初步归结于硫化菜籽油在摩擦副表面上形成的吸附油膜,以及摩擦过程中由于摩擦化学反应形成的摩擦转移膜共同起减摩耐磨和极压作用.  相似文献   

11.
To improve the anti-corrosion behaviors of magnesium alloy in the inner environment of human body,a bioactive Ca-P coating was deposited on the AZ60 magnesium alloy by a novel simple method.The morphologies of the Ca-P coatings formed under different treatment time were studied by scanning electron microscopy(SEM).The corrosion behaviors of Ca-P coating were investigated by electrochemical polarization test and electrochemical impedance spectroscopy in both 3%(mass fraction) NaCl solution and simulated body fluid(SBF).Immersion test in SBF was performed to evaluate the corrosion rate of Ca-P coated magnesium alloy.X-Ray diffraction(XRD) analysis result shows that the coating mentioned above mainly consists of dicalcium phosphate dehydrate(CaHPO4·2H2O,DCPD) and β-tricalcium phosphate dehydrate[β-TCP,Ca3(PO4)2],which exhibits good corrosion resistance.After magnesium alloy was immersed in 1 mol/L NaOH solution at 80 ℃ for 2 h,hydroxyapatite [Ca10(PO4)6(OH)2,HA]appeared on the magnesium alloy substrate,which can further decrease the corrosion rate of AZ60 magnesium alloy in SBF.  相似文献   

12.
由于结构和成分的影响,覆有微弧氧化涂层的AZ91D镁合金的极化曲线有多种不同的表现形式.事实上,覆有微弧氧化涂层的AZ91D镁合金在NaCl溶液中的极化曲线行为不仅与涂层的主要组成和微观结构有关,也与极化曲线测试条件,如氯离子浓度、溶液pH值、阴极极化程度和样品的暴露面积有关,由于微弧氧化涂层的不稳定性,这些因素通过改变氧化涂层的组成和微观结构,继而影响极化曲线的形状.本文用傅里叶变换显微红外成像和对应的光学照片研究了氧化涂层的成分和结构的变化.结合物理表征,我们提出一个模型,用以阐明微弧氧化涂层组成和结构在NaCl溶液中的变化.对于浸泡在NaCl溶液中的AZ91D微弧氧化涂层,阳极溶解和阴极还原反应的速控步骤分别是传质过程和电荷转移过程.所以从极化曲线上拟合出来的腐蚀电流密度不能准确反映腐蚀速率,而且误差也难以避免.  相似文献   

13.
Magnesium and its alloys have been suggested as potential absorbable implant materials due to their excellent biodegradability and biocompatibility. Current researchers focus on reducing the rapid corrosion rate of Mg and its alloys by alloying and surface modification. To improve the corrosion resistance, pure Mg is modified by micro‐arc oxidation (MAO) in phosphate electrolyte containing sodium hydroxide and its properties are compared with those formed using only phosphate or sodium hydroxide as electrolytes. A uniform and stable coating layer is formed on Mg after MAO treatment in phosphate electrolyte containing sodium hydroxide. The corrosion resistance of MAO‐coated Mg is evaluated by potentiodynamic polarization study and immersion test. The results reveal that MAO coating enables a good improvement in corrosion resistance, and among them, coatings treated using phosphate electrolyte containing sodium hydroxide offer the best performance. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Although magnesium is used in many industries, it is reactive and requires protection against aggressive environments. In this study, oxide coating was formed on AZ91D magnesium alloy using micro-arc oxidation (MAO) process in an alkaline electrolyte. Then, in order to seal the pores in the oxide film, a sol–gel layer was applied to the surface of the MAO coating by dipping. For investigation of heat treatment temperature of the sol–gel layer on the properties of the coatings, two different temperatures (150 and 350 °C) were chosen. Surface morphologies and compositions of the coatings were analyzed by Scanning Electron Microscope and X-ray Diffraction (XRD). Surface roughness of the coatings was also measured. The corrosion behavior of the coatings was evaluated with Electrochemical Impedance Spectroscopy and potentiodynamic polarization tests in 3.5 wt%NaCl solution. The porosity percent of the coatings was measured by potentiodynamic polarization tests results. It is found that the sol–gel layers successfully cover the pores of the MAO coatings. The results of the corrosion tests show that the sol–gel layers significantly increase the corrosion resistance of the substrate by reducing the percent of the porosity. The grain size measurements by XRD analysis shows that the grain size of the sol–gel layer heated in 350 °C is about 50 nm.  相似文献   

15.
AZ91D镁合金上钼改性锌系磷化膜的制备、 结构及性能   总被引:13,自引:0,他引:13  
采用在磷化液中添加钼酸钠及腐蚀抑制剂的方法, 在AZ91D 镁合金表面上制备了均匀细致的锌系复合磷化膜. 用XRD对膜层的化学组成及结构进行了表征,用SEM和EDS对膜层的形貌和组分含量进行分析. 结果表明, 磷化膜主要由Zn3(PO4)2·4H2O和单质Zn组成. 在磷化液中加入钼酸钠使磷化膜组织更加细致而且无裂纹. 磷化液中的钼酸钠含量为1.5 g/L时, 磷化膜的结晶最致密, 单质锌的含量最高, 耐蚀性最好. 还提出了一种快速测量镁合金表面膜层耐蚀性的试验方法, 同时对镁合金上的磷化反应的机理进行了探讨.  相似文献   

16.
在Na2SiO3-KOH电解液体系中添加一定量的(NaPO3)6, 利用微弧氧化(MAO)技术在AZ91D 镁合金表面制备了原位生长的陶瓷层. 采用动电位极化和电化学阻抗谱(EIS)技术研究了添加(NaPO3)6前后, 制备的陶瓷层在3.5%(w) NaCl溶液中的室温电化学行为. 结果表明, 添加(NaPO3)6后, 陶瓷层的自腐蚀电位显著上升, 自腐蚀电流密度明显减小. 这主要是由于(NaPO3)6增加了反应过程中基体镁合金表面的“氧空位”和溶液中PO3-4的含量, 促使元素Mg在金属/膜层(M/F)界面上快速形成相应氧化物, 从而增加了陶瓷层的厚度和致密性. 根据电化学反应体系和陶瓷层的特殊结构, 建立了合理的等效电路, 并结合EIS 数据, 分析了添加(NaPO3)6提高陶瓷层耐电化学腐蚀性能的机理.  相似文献   

17.
Magnesium matrix composites reinforced by calcium phosphate could not show the desired effect on the magnesium breakdown rate. Rapid disintegration rate limited the magnesium alloys used as biodegradable implant material. The rate of degradation can be minimized and biological activity can be improved in the magnesium alloy by Hydroxyapatite (HA) coating with the improvement of bone induction and conduction abilities. Various alkali post-treatment and conversion coating methods are applied to deposit HA coatings and biocompatible dicalcium phosphate dihydrate (DCPD) on magnesium alloy so that corrosion resistance and surface biocompatibility can be improved to be used in bone tissue engineering applications. Magnesium's corrosion resistance will weaken its antibacterial properties, which are linked to and proportional to the alkaline pH at the time of breakdown. The goal of this study is to bring together and compare contemporary research on different coatings on magnesium and related alloys in relation to antibacterial functionalized activities. A though review has been performed on in vivo and in vitro cytocompatibility, material property, corrosion resistance, and antibacterial properties of the coatings. Increased degradation behavior, biocompatibility, and bioactivity have been achieved following multiple procedures such as alkali treatment with HA electrochemical deposition on magnesium alloy. Multifunctional coatings can make safe and bioactive magnesium alloy surfaces for biodegradable implant applications.  相似文献   

18.
The biodegradable metals, including magnesium (Mg), are a convenient alternative to permanent metals but fast uncontrolled corrosion limited wide clinical application. Formation of a barrier coating on Mg alloys could be a successful strategy for the production of a stable external layer that prevents fast corrosion. Our research was aimed to develop an Mg stable oxide coating using plasma electrolytic oxidation (PEO) in silicate-based solutions. 99.9% pure Mg alloy was anodized in electrolytes contained mixtures of sodium silicate and sodium fluoride, calcium hydroxide and sodium hydroxide. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), contact angle (CA), Photoluminescence analysis and immersion tests were performed to assess structural and long-term corrosion properties of the new coating. Biocompatibility and antibacterial potential of the new coating were evaluated using U2OS cell culture and the gram-positive Staphylococcus aureus (S. aureus, strain B 918). PEO provided the formation of a porous oxide layer with relatively high roughness. It was shown that Ca(OH)2 was a crucial compound for oxidation and surface modification of Mg implants, treated with the PEO method. The addition of Ca2+ ions resulted in more intense oxidation of the Mg surface and growth of the oxide layer with a higher active surface area. Cell culture experiments demonstrated appropriate cell adhesion to all investigated coatings with a significantly better proliferation rate for the samples treated in Ca(OH)2-containing electrolyte. In contrast, NaOH-based electrolyte provided more relevant antibacterial effects but did not support cell proliferation. In conclusion, it should be noted that PEO of Mg alloy in silicate baths containing Ca(OH)2 provided the formation of stable biocompatible oxide coatings that could be used in the development of commercial degradable implants.  相似文献   

19.
In this work, a calcium silicate and calcium phosphate (CaSiO3/CaHPO4 · 2H2O) composite coating was applied by a chemical reaction to an extruded Mg‐Zn‐Ca magnesium alloy. SEM observation showed that a flat and sand‐like conversion coating was formed. X‐ray diffractometer (XRD) analysis indicated that the conversion coating was composed of CaHPO4 · 2H2O and a little amount of CaSiO3. The formation mechanism of CaSiO3/CaHPO4 · 2H2O composite conversion coatings was discussed. The electrochemical polarization tests showed that the conversion coating markedly improved the biocorrosion resistance of Mg‐Zn‐Ca alloy in Hank's solution. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
镁合金化学转化膜的制备及其性能研究   总被引:1,自引:0,他引:1  
在磷酸钠-磷酸二氢铵-高锰酸钾体系中对镁合金进行化学转化处理.研究了磷酸钠、磷酸二氢铵、高锰酸钾、温度、时间和添加剂对转化膜性能的影响.通过对转化膜结构、成分及性能的测试评价,得到了性能较好的化学转化溶液配方:Na3PO4为5g·L-1,NH4H2PO4为15 g· L-1,KMnO4为1g· L-1,添加剂(NH4)6 Mo7O24为0.5g·L-1.由SEM可观察到转化膜的表面成“干枯河床”状.XRD和EDS检测表明,膜层的主要成分是Mg,Al12 Mg17和无定形相,膜层表面主要有Mn,Mg,K,O和Al等元素组成.腐蚀实验和电化学测试表明,添加剂能够降低转化膜的腐蚀率,转化膜较基体的腐蚀电位正移了0.73 V,提高了镁合金的耐蚀性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号