首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method of analysis of silver nanoparticles (AgNPs) in chicken meat was developed. The homogenized chicken meat sample, which was spiked with AgNPs, was subjected to enzymolysis by Proteinase K for 40 min at 37 °C. Transmission electron microscopy and inductively coupled plasma mass spectrometry (ICP-MS) in single particle mode were used to characterize the number-based size distribution of AgNPs in the meat digestate. Because similar size distributions were found in the meat digestate and in the aqueous suspension of AgNPs used for spiking the meat, it was shown that no detectable dissolution of the AgNPs took place during the sample preparation stage. The digestate was injected into the asymmetric flow field flow fractionation (AF4) -ICP-MS system, which enabled fractionation of nanoparticles from the remaining meat matrix, and resulted in one large peak in the fractograms as well as two smaller peaks eluting close to the void volume. The recovery of silver contained in the large AgNP peak was around 80 %. Size determination of AgNPs in the meat matrix, based on external size calibration of the AF4 channel, was hampered by non-ideal (early elution) behavior of the AgNPs. Single particle ICP-MS was applied for determination of the number-based particle size distribution of AgNPs in collected fractions. The presented work describes for the first time the coupling of AF4 and ICP-MS for AgNP separation in a food matrix.  相似文献   

2.
The stability of silver nanoparticles is controlled mainly by two major factors, namely, aggregation and oxidation. In the present study, silver nanoparticles were synthesized by using different series of reducing agents like a strong reducing agent (sodium borohydride), a mild reducing agent (tri-sodium citrate), and a weak reducing agent (glucose) with different capping agents, namely, polyvinyl pyrrolidone (PVP K 30), starch, and sodium carboxyl methyl cellulose (NaCMC). The synthesized silver nanoparticles were characterized by UV-Visible absorption spectroscopy, dynamic light scattering (DLS), atomic force microscopy (AFM), and anti-microbial activity. The particle size of silver nanoparticles varies in the following order: sodium borohydride < tri-sodium citrate < glucose. Combination of sodium borohydride–polyvinyl pyrrolidone and tri-sodium citrate-polyvinyl pyrrolidone yields stable silver nanoparticles compared to other combinations of reducing agents and capping agents. The stability results confirmed that a refrigerated condition (8°C) was more suitable for storage of silver nanoparticles. Anti-microbial activity of silver nanoparticles synthesized in a sodium borohydride–polyvinyl pyrrolidone mixture shows a larger zone of inhibition compared to other silver nanoparticles. Anti-microbial results confirmed that the anti-microbial activity is better with smaller particle size. The size and stability of silver nanoparticles in the presence of different combinations of stabilizing and capping agents are reported.  相似文献   

3.
Silver-doped silica was prepared by hydrolysis and condensation of tetraethyl orthosilicate (TEOS, Si(OC2H5)4) in the presence of a silver nitrate (AgNO3) solution by two different synthesis methods. In the first synthesis route, sol-gel mixtures were prepared using an acid catalyst. In the second synthesis route, silver-doped silica gels were formed by two-step acid/base catalysis. For the same concentration of silver dopant [AgNO3]/[TEOS] = 0.015 acid-catalyzed sol-gel formed a microporous silica with an average pore size of <25 Å whereas the two-step catalyzed silica had an average pore size of 250 Å and exhibited a mesoporous structure when fully dried. The differences in the pore size affected the silver particle formation mechanism and post-calcination silver particle size. After calcination at 800 °C for 2 h the acid-catalyzed silica contained metallic silver particles size with an average particle size of 24 ± 2 nm whereas two-step catalyzed silica with the same concentration of [AgNO3]/[TEOS] = 0.015 contained silver nanoparticles with an average size of approximately 32 ± 2 nm. Mechanisms for silver particle formation and for silica matrix crystallization with respect to the processing route and calcination temperature are discussed.  相似文献   

4.
《Analytical letters》2012,45(10):1254-1263
A competitive indirect chemiluminescent enzyme-linked immunoassay (CL-ELISA) for chloramphenicol (CAP) residues in milk and chicken muscle has been developed. Due to the unique characteristic of the polyclonal antibody, special reaction system and modified extract method, then after optimization (concentration of Tween-20, concentration of PB and pH, incubation time, and temperature), the method gave a detection limit of 0.92 ng/L and a detection range of 3.16–3035 ng/L, with the IC50 of 17.29 ng/L in optimum condition and real sample matrix. When CAP was spiked in milk and chicken muscle at levels of 5–100 ng/L, recoveries ranged from 104.9%–114.8% and 101.0%–118.8%, with coefficients of variation of 3.0%–14.6% and 9.5%–14.4%, respectively. In an actual chicken muscle residue study, although the extract of samples diluted 10-fold, or even 100-fold, which represents extremely lower concentration of CAP, the results obtained by CL-ELISA correlated well with those obtained by gas chromatography with microcell electron capture detector. The developed method is therefore suitable for screening of ultratrace CAP residues in milk and chicken muscle samples.  相似文献   

5.
Results in a previous study showed up to a 55% increase in saccharification rates when the initial particle size range decreased from 590?<?x?<?850 μm down to 33?<?x?<?75 μm. The smaller particle sizes also lowered the viscosity of the slurry 50-fold (for an equivalent initial solids concentration). In this study, ultrasonic irradiation was employed to further reduce the particle size of sawdust slurries below the ranges in the previous study in an attempt to further increase enzymatic saccharification rates and lower the slurry viscosity. Average particle sizes were reduced to less than 1 μm under the conditions tested. Surprisingly, the amount and rates of sugar released in this study with the ~1 μm particles is comparable (maximum glucose release of 30%) to, but no better than that seen for particle sizes in the range of 33?≤?x?≤?75 μm (maximum glucose release of 31%). Also surprisingly, the viscosity increased as the average particle sizes in the slurries decreased, which is opposite to the trend in the previous study. For example, there was an approximately threefold increase in the viscosity between unsonicated samples with a range of 10?≤?x?≤?75 μm and sonicated samples with a range of 0.05?≤?x?≤?12 μm. This is attributed to the variations in surface characteristics of the particles which were characterized here using X-ray diffraction profiles and SEM pictures.  相似文献   

6.
A method for determining the size of silver nanoparticles and their quantification by asymmetric flow field-flow fractionation coupled with inductively coupled plasma mass spectrometry (ICP-MS) is proposed and was tested in consumer products. Experimental conditions were studied in detail to avoid aggregation processes or alteration of the original size distributions. Additionally, losses from sorption processes onto the channel membrane were minimized for correct quantification of the nanoparticles. Mobile phase composition, injection/focusing, and fractionation conditions were evaluated in terms of their influence on both separation resolution and recovery. The ionic strength, pH, and the presence of ionic and nonionic surfactants had a strong influence on both separation and recovery of the nanoparticles. In general, better results were obtained under those conditions that favored charge repulsions with the membrane. Recovery values of 83 ± 8% and 93 ± 4% with respect to the content of silver nanoparticles were achieved for the consumer products studied. Silver nanoparticle standards were used for size calibration of the channel. The results were compared with those obtained by photon correlation spectroscopy and images taken by transmission electron microscopy. The quantification of silver nanoparticles was performed by direct injection of ionic silver standard solutions into the ICP-MS system, integration of the corresponding peaks, and interpolation of the fractogram area. A limit of detection of 5.6 μg L-1 silver, which corresponds to a number concentration of 1×1012 L-1 for nanoparticles of 10 nm, was achieved for an injection volume of 20 μL.  相似文献   

7.
A simple and sensitive method was optimized and validated for the analysis of carbadox and olaquindox residues in chicken muscles, chicken liver, bovine meat, liver and milk. Analytical separation was performed in less than 4 min using a C18 column with UV detection at 373 nm and a micellar solution of 0.1 M sodium dodecyl sulphate, 10 % acetonitrile and 0.3 % triethylamine in 0.02 M phosphoric acid buffered at pH 4 as the mobile phase. The method was fully validated in accordance with ICH guidelines. The micellar method was successfully applied to quantitatively determine carbadox and olaquindox residues in spiked chicken muscles, chicken liver, bovine meat, liver and milk. It was also extended to the determination of carbadox and olaquindox residues in baby formulae. The recoveries obtained were in the 89.2–93.6 and 93.0–107.2 % ranges for carbadox and olaquindox, respectively. High extraction efficiency for carbadox and olaquindox was obtained without matrix interference in the extraction process and in the subsequent chromatographic determination. No organic solvent was used during the pretreatment step.  相似文献   

8.
ABSTRACT

In the present study, novel bioconjugated sorbents (peptide and oligo-nucleotide on the cobalt aluminate nanomaterials) were used to remove lead through miniaturised process and the concentration of lead was measured by inductively coupled plasma mass spectrometry. For this aim, lead was collected on sorbent in mini tube, and the influences of experimental conditions (e.g. pH of sample, amount of sorbent, concentration of eluent, foreign ions) and retention parameters on the recovery of the lead element were examined. After the optimisation of experimental parameters, a successful separation was obtained at pH 7.5 with high (>95%) quantitative recovery and high precision (<10% relative standard deviation). Using the proposed bioconjugated sorbents, the lead in sea water and tap water samples could be practically and easily removed with 95% confidence level. The detection limits of this method for lead using oligonucleotide and peptide on the cobalt aluminate nanomaterials were 0.14 and 0.12 µg/L (3σ, N = 10) with sample-matched blanks. This method can be widely used as promising and cost-effective nanomaterials to remove lead from water systems.  相似文献   

9.
Water in oil droplets are used to control the size of silver metal nanoparticles. After synthesis, the silver metal particles are extracted from reverse micelles and redispersed in a non polar solvent. By increasing the size of the water droplets the average size of silver nanoparticles increases from 2 nm to 7 nm with a rather high size distribution. To narrow the panicle distribution a size selected precipitation method is used. By deposition of a dilute solution containing the coated particles on a carbon grid, the particles arrange themselves in a monolayer organized in a hexagonal network. At high particle concentration, the particles are organized in multilayers forming microcrystals arranged in a face centered cubic structure. The optical properties of the silver nanoparticles isolated in micellar solution or self-assembled in 2D or 3D supperlattices are reported.  相似文献   

10.
A novel and quick ultra performance liquid chromatography-photo diode array detector method has been developed and validated for the simultaneous determination of ten synthetic preservatives in foodstuff. An Acquity BEH C18 column (50 × 2.1 mm i.d., 1.7 μm particle size) was used. The mobile phase consisted of a mixture of acetonitrile and 20 mM potassium dihydrogen phosphate/phosphoric acid (pH 4.29) buffer at the gradient elution program. The ten compounds behaved linearly in the 0.100–20.0 μg mL?1 concentration range, with correlation coefficient >0.999. The precision inter- and intra-day of the ten synthetic preservatives at three concentration levels were 0.11–5.75% (RSD). The recoveries at three different concentrations were 88.7–99.0%, with coefficients of variation <6.3%. The method was applied to the determination of preservatives in cola beverages, fruit-flavoured carbonate beverages and fruit juice beverages, and proved its suitability for quick and reliable quality control.  相似文献   

11.
Latex emulsions depend strongly on the polymer composition, and particle size distribution, which in turn, is a function of the preparation of the latex and on the formulation and composition variables. This study reports measurements of particle size and particle size distribution of latex emulsions as function of the reaction time and the type and concentration of emulsifier by using the multiwavelength spectroscopy technique. Results show changes in the particle size of latex emulsions with the reaction time, obtaining larger particles and broader distributions with increasing of Tween 80 ratio. The steric stabilization provides the sole nonionic emulsifier is not enough to protect the polymer particle, causing the flocculation among the interactive particles, resulting in unstable latex. However, latex emulsions prepared with Tween 80 ratio <70 wt.% can stabilize efficiently the nucleated particles, probably due to the effects provided by both, the electrostatic and steric stabilization mechanisms. The same effect is shown in the curves of conversion (%) as a function of reaction time, resulting in slower polymerization rate for Tween 80 ratio >70 wt.%. On the other hand, smaller polymer particles, in all range of emulsifier mixture, have been obtained to higher emulsifier concentration.  相似文献   

12.
A simple flow injection (FI) conductometric system with gas diffusion separation was developed for the determination of Kjeldahl nitrogen (or proteins) in milk and chicken meat. The sample was digested according to the Kjeldahl standard method and the digest was diluted and directly injected into the donor stream consisting of 4 M NaOH. In alkaline medium, ammonium was converted to ammonia, which diffused through the PTFE membrane to dissolve in an acceptor stream (water). Dissociation of ammonia caused a change in conductance of the acceptor solution, which was linearly proportional to the concentration of ammonium originally present in the injected solution. A conductometric flow through cell and an amplifier circuit was fabricated, which helped improve sensitivity of the conductometric detection system. With using a plumbing Teflon tape as a gas diffusion membrane and without thermostating control of the system, a linear calibration graph in range of 10-100 mg L−1 N-NH4 was obtained, with detection limit of 1 mg L−1 and good precision (relative standard deviation of 0.3% for 11 replicate injections of 50 mg L−1 N-NH4). The developed method was validated by the standard Kjeldahl distillation/titration method for the analysis of milk and chicken meat samples. The proposed system had sample throughput of 35 h−1 and consumed much smaller amounts of chemical than the standard method (275 mg vs 17.5 g of NaOH per analysis, respectively).  相似文献   

13.
A simple, isocratic, stability-indicating liquid chromatographic method for quantitative determination of curcumin was successfully developed. The chromatographic separations were achieved using a Hi-Q-Sil C18; 4.6 mm × 250 mm and 10 μm particle size column employing acetonitrile and acetate buffer (pH 3.0; 60: 40, v/v) as the mobile phase. The analyte was subjected to acidic, basic, oxidative, thermal and photo degradation. The method was validated with respect to linearity, precision, accuracy, limit of detection and limit of quantification. Curcumin was detected by UV-Vis detector at 425 nm whereas the degradation products were detected at 280 nm. The method was linear over the concentration range of 1–10 μg mL?1. The limit of detection was found to be 0.06 μg mL?1 and the quantification limit was 0.21 μg mL?1. Considerable degradation of the analyte was observed when it was subjected to alkaline conditions. Accuracy, evaluated as recovery, was in the range of 97–103%. Intra-day precision and intermediate precision showed relative standard deviations <1% and <2% respectively.  相似文献   

14.
The ability to detect and identify the physiochemical form of contaminants in the environment is important for degradation, fate and transport, and toxicity studies. This is particularly true of nanomaterials that exist as discrete particles rather than dissolved or sorbed contaminant molecules in the environment. Nanoparticles will tend to agglomerate or dissolve, based on solution chemistry, which will drastically affect their environmental properties. The current study investigates the use of field flow fractionation (FFF) interfaced to inductively coupled plasma-mass spectrometry (ICP-MS) as a sensitive and selective method for detection and characterization of silver nanoparticles. Transmission electron microscopy (TEM) is used to verify the morphology and primary particle size and size distribution of precisely engineered silver nanoparticles. Subsequently, the hydrodynamic size measurements by FFF are compared to dynamic light scattering (DLS) to verify the accuracy of the size determination. Additionally, the sensitivity of the ICP-MS detector is demonstrated by fractionation of μg/L concentrations of mixed silver nanoparticle standards. The technique has been applied to nanoparticle suspensions prior to use in toxicity studies, and post-exposure biological tissue analysis. Silver nanoparticles extracted from tissues of the sediment-dwelling, freshwater oligochaete Lumbriculus variegatus increased in size from approximately 31-46nm, indicating a significant change in the nanoparticle characteristics during exposure.  相似文献   

15.
With the rising use of nanomaterials in everyday objects, an uptake of those materials by humans is very likely. To assess their effect on the body, reliable detection of nanoparticles even in very low amounts in human blood becomes increasingly important. Single-particle (SP) inductively coupled plasma–mass spectrometry (ICP-MS) is a fast and reliable method for counting and sizing particles at lowest concentrations, while simultaneously distinguishing between dissolved and particulate analytes. For the first time to our knowledge, a dedicated method validation approach for silver and gold nanoparticle analysis in human whole blood has been performed. With only little sample preparation, trueness expressed as bias with values below or equal to 5% and imprecision values below 6% for particle size as well as an effective limit of detection of around 20?nm are possible. The concentration working range throughout all measured samples was in the nanogram per liter range, making SP-ICP-MS a powerful tool in future nanotoxicological applications and trace analysis of nanoparticles.  相似文献   

16.
《Analytical letters》2012,45(7):1180-1189
The green synthesis of silver nanoparticles using an aqueous extract of Ferocactus echidne(a member of the cactus family) as a reducing agent is reported. It is simple, efficient, rapid, and ecologically friendly compared to chemical-mediated methods. Ferocactus echidne is a plant of high medicinal value and rich in polyphenolic antioxidants. The extraction is simple and the product rapidly reduces silver ions without involvement of any external chemical agent. The reduction of silver nanoparticles was characterized by ultraviolet-visible spectrometry as a function of time and concentration. The results show that Ferocactus echidne reduces silver ions within 6 h depending upon the concentration. Further increases in reaction time may result in a blue shift, indicating an increase in particle size, whereas concentration had a minor effect on the particle size. The structure of synthesized nanoparticles was investigated by infrared spectroscopy, scanning electron microscopy, and X-ray diffraction. The infrared spectra indicated the association of organic materials with silver nanoparticles to serve as capping agents. Scanning electron micrographs showed that synthesized silver nanoparticles were nearly uniform and elliptical in shape with diameters of 20 to 60 nm. X-ray diffraction confirmed the formation of silver nanoparticles with an approximate 20 nm particle size calculated using the Debye-Scherer equation. Biological tests revealed that the silver nanoparticles were active against gram positive and negative bacteria( Escherichia coli and Staphylococcus aureus) and fungi (Candida albicans), indicating their broad spectrum antibiotic and antifungal abilities.  相似文献   

17.
In this work, chicken and fish peptides were obtained using the proteolytic enzymes α-Chymotrypsin and Flavourzyme. The muscle was hydrolyzed for 4 h, and the resulting peptides were evaluated. Hydrolysates were produced from Argentine croaker (Umbrina canosai) with a degree of hydrolysis (DH) of 25.9 and 27.6 % and from chicken (Gallus domesticus) with DH of 17.8 and 20.6 % for Flavourzyme and α-Chymotrypsin, respectively. Membrane ultrafiltration was used to separate fish and chicken hydrolysates from Flavourzyme and α-Chymotrypsin based on molecular weight cutoff of >1,000, <1,000 and >500, and <500 Da, to produce fractions (F1,000, F1,000–500, and F500) with antioxidant activity. Fish hydrolysates produced with Flavourzyme (FHF) and α-Chymotrypsin showed 60.8 and 50.9 % of peptides with a molecular weight of <3 kDa in its composition, respectively. To chicken hydrolysates produced with Flavourzyme and α-Chymotrypsin (CHC) was observed 83 and 92.4 % of peptides with a molecular weight of <3 kDa. The fraction that showed, in general, higher antioxidant potential was F1,000 from FHF. When added 40 mg/mL of FHF and CHC, 93 and 80 % of lipid oxidation in ground beef homogenates was inhibited, respectively. The composition of amino acids indicated higher amino acids hydrophobic content and amino acids containing sulfuric residues for FHF, which showed antioxidant potential.  相似文献   

18.
This publication describes the first international intercomparison of particle-size determination by single-particle inductively coupled plasma mass spectrometry (sp-ICPMS). Concentrated monodisperse silver nanoparticle suspensions with particle diameters of 20, 40 and 100 nm and a blank solution were sent to 23 laboratories in Europe, the USA and Canada. Laboratories prepared eight nanoparticle preparations in two food simulants (distilled water; 10 % ethanol) and reported median particle size, Ag particle mass concentration and Ag particle number concentrations. Average repeatability and reproducibility standard deviation (s r and s R) for the median particle diameter were 1 and 14 nm, respectively. Relative precision was worse for Ag particle number concentrations (RSD r?=?11 %; RSD R?=?78 %). While further improvements of the method, especially with respect to software tools for evaluation, hardware options for shorter dwell times, calibration standards for determining nebuliser efficiency and further experience by laboratories are certainly desirable, the results of this study demonstrate the suitability of sp-ICPMS for the detection and quantification of certain kinds of nanoparticles.  相似文献   

19.
Tremella fuciformis (Berk.), also known as silver ear, has a high economic value due to being a valuable edible and medicinal mushroom. The focus of this study was on the various particle sizes of 80–300 mesh (particle diameters from 2 mm to 250 μm) for freeze-drying silver ear powder in order to determine the water-holding capacity, viscosity, and crude polysaccharide content of various particle sizes. Our aim was to determine the possible conditions for silver ear powder for food processing under the conditions of oxidation/non-oxidation and heat treatment. Overall, we obtained various particle sizes of silver ear powder, the water-holding capacity decreased from 21.84 to 14.82 g g?1, the viscosity increased from 8.53 to 71.20 cP, and the content of crude polysaccharides, which remained almost constant, was approximately 300 mg g?1. In addition, the smaller the particle size of silver ear powder, the greater the thermal stability of the particles by differential scanning calorimetry (DSC) and thermogravimetric (TG) tests. The results for various particle sizes of silver ear powder in food processing are never more than ca. 240 °C by DSC tests. Moreover, comparing the results of thermal decomposition using TG analyzer under nitrogen and air conditions, in nitrogen, the various particle sizes have better preservation for storage conditions and the smaller particle size powders retained good thermal decomposition characteristics.  相似文献   

20.
Aminopropyl-functionalized mesoporous silicas, NH2-MCM-41 and NH2-SBA-15, as absorbents were utilized for rapid extraction, preconcentration and determination of trace amounts of silver. Flow rates of sample and eluent, pH, eluent solution, type, concentration and the least amount of eluent for desorption of silver ions were optimized; moreover, break through volume and the effect of various cationic interferences on the sorption of silver were evaluated. The extraction efficiency of silver ions was greater than 95% for MCM-41-NH2 and 85% for SBA-15-NH2 and the limit of detection (LOD) was less than 4 ng mL?1 for both functionalized mesoporous silicas. The preconcentration factor was greater than 210 and the relative standard deviation (RSD) was <2%. The adsorption capacity of the mesoporous silicas is higher than 143 mg g?1 for NH2-MCM-41 and 137 mg g?1 for NH2-SBA-15. Under similar experimental conditions the results for these solid phases were compared with each other. NH2-SBA-15, in spite of larger pore size diameter and adsorption of silver ions in higher flow rates has lower recovery and a higher RSD compared to MCM-41. This method has been applied to determine silver in photographic emulsions and real samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号