首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Emerging contaminants are a broad category of chemicals, previously unknown or unrecognized as being of concern, but which, because of their potential health effects associated with human exposure, are under increasing scrutiny. To accurately measure their levels in biological matrices, specific and sensitive analytical methods have recently been developed. We have reviewed here the methods used for analysis of selected emerging organic contaminants, for example metabolites of organophosphate triesters, metabolites of new phthalates or phthalate substitutes, perchlorate, organic UV filters, and polycyclic siloxanes, in human matrices. Although the use of new techniques and approaches has been emphasized, we also acknowledge methods previously used for other contaminants and adapted for the emerging contaminants listed above. In all cases, chromatography and mass spectrometry were the techniques of choice, because of their selectivity and sensitivity for measurements at ng?g?1 levels. Critical issues and challenges have been discussed, together with recommendations for further improvement in particular cases (e.g. metabolites of phthalates or their substitutes). In particular, the use of labeled internal standards, the availability of certified reference materials, and the need for interlaboratory comparison exercises are key aspects of further development of this field of research.
Figure
Humans are daily exposed to a cocktail of chemicals, including new compounds  相似文献   

2.
In this study, we develop fast screening methods for flame retardants and plasticizers in products and waste based on direct probe (DP) atmospheric pressure photoionization (APPI) and atmospheric pressure chemical ionization (APCI) coupled to a high-resolution (HR) time-of-flight mass spectrometer. DP-APPI is reported for the first time in this study, and DP-APCI that has been scarcely exploited is optimized for comparison. DP-APPI was more selective than DP-APCI and also more sensitive for the most hydrophobic compounds. No sample treatment was necessary, and only a minimal amount of sample (few milligrams) was used for analysis that was performed within a few minutes. Both methods were applied to the analysis of plastic products, electronic waste, and car interiors. Polybrominated diphenylethers, new brominated flame retardants, and organophosphorus flame retardants were present in most of the samples. The combination of DP with HR mass spectra and data processing based on mass accuracy and isotopic patterns allowed the unambiguous identification of chemicals at low levels of about 0.025 % (w/w). Under untargeted screening, resorcinol bis(biphenylphosphate) and bisphenol A bis(bisphenylphosphate) were identified in many of the consumer products of which literature data are still very limited.
Figure
Direct probe APPI/APCI-HRMS for screening flame retardants and plasticizers  相似文献   

3.
Food and contaminated indoor environments are the most relevant sources of human exposure to polyhalogenated chemicals. This study analyzed for the first time fat residues in kitchen hoods for contaminations with polyhalogenated compounds. A wide range of contaminants was detected in all kitchen hoods (n?=?15) and most of them could be quantified. Between 0.2 and 18 μg polyhalogenated chemicals/g fat were detected, with chlorinated paraffins being the most relevant contaminant group. Aside from the chlorinated paraffins, each kitchen hood fat sample showed a distinct fingerprint. A wide range of old and current-use brominated flame retardants were also detected in the samples. In addition to these contaminants originating from their use in indoor equipment, residues of organochlorine pesticides and semi-volatile halogenated natural products verified that cooking of food, accompanied with the release of contaminants from the heated food, was another relevant source of contamination. Re-analyses of two samples after 3 months only resulted in small variations in contaminant pattern and concentrations. Therefore, fat from kitchen hoods is proposed as an easily accessible matrix to assess contamination of these hazardous polyhalogenated chemicals.
Figure
Picture of a kitchen hood and its filter. The fat collected from kitchen hood filters contained plenty of polyhalogenated chemicals  相似文献   

4.
A method for the simultaneous determination of six perfluoroalkyl compounds (perfluorooctanesulfonic acid (PFOS) and five perfluoroalkyl carboxylic acids), five phenolic compounds (nonylphenol (NP), bisphenol A (BPA), and methyl-, ethyl- and propylparabens), and the brominated flame retardant hexabromocyclododecane (HBCDD) in surface water and effluent wastewater has been developed. The selected pollutants include eight of the industrial pollutants (PFOS and derivatives, NP, and HBCDD) that could be regulated in surface water according to an European Union Directive proposal and four compounds of great concern because their estrogenicity (BPA and parabens). The method is based on solid-phase extraction and determination by high-performance liquid chromatography–triple quadrupole mass spectrometry in negative electrospray ionization mode. Method quantitation limits of NP, PFOS and derivatives, and HBCDD allow its application for routinely control of surface water according to the EU proposal of directive.
Figure
?  相似文献   

5.
We have developed a highly sensitive microextraction method for the preconcentration of some phthalate esters such as diethyl phthalate, di-n-propylphthalate, di-n-butyl-phthalate, dicyclohexyl-phthalate, and diethyl-hexyl phthalate prior to their determination by HPLC. It is based on a magnetic graphene nanocomposite as an effective adsorbent. The effects of the amount of the extractant composite employed, extraction time, pH values, salt concentration and desorption conditions were investigated. Under the optimum conditions, the enrichment factors range from 1574 to 2880. Response is linear in the concentration range from 0.1 to 50?ng?mL?1. The limits of detection (at S/N?=?3) were between 0.01 and 0.04?ng?mL?1. The method was successfully applied to the determination of five phthalate esters in water and beverage samples.
A novel microextraction method was developed by using magnetic graphene nanocomposite as an effective adsorbent for the preconcentration of some trace phthalate esters in water and beverage samples followed by high performance liquid chromatography with ultraviolet detection. The enrichment factors of the method for the compouds were achieved ranging from 1574 to 2880.  相似文献   

6.
We have extracted ten phthalate esters (C1 to C8) using six different micro-scale methods for extraction, and then separated them by capillary liquid chromatography coupled to UV detection. The methods included liquid-liquid extraction, ultrasonic-assisted extraction, microwave-assisted extraction, dispersive liquid-liquidmicroextraction, dispersive liquid-liquid microextraction solidification of floating organic droplets, and cloud point extraction. The linear range of the analytes is from 0.5 to 50 μg mL?1, and the detection limits range from 0.02 to ~0.17 μg mL?1. The precision and accuracy of all intra- and inter-day analyses are <5.5%. We find that dispersive liquid-liquid microextraction solidification of floating organic droplet (DLLME-SFO) is the best method for quantification of most phthalate esters in water samples and cosmetics because of its low limit of detection and high extraction efficiencies.
Figure
Phthalate esters were extracted by six micro-scale extraction methods and then determinated by capillary liquid chromatography coupled with ultraviolet detector (CapLC-UV).  相似文献   

7.
Carbon fiber microelectrode amperometry (CFMA) is explored as a technique for studying the effects of immunotoxicants on single-cell in vitro exocytosis function in a mouse peritoneal mast cell (MPMC)/fibroblast co-culture model. MPMCs were acutely exposed to between 10 and 100 μM of the immunotoxicants mono-2-ethylhexyl phthalate (MEHP) and bisphenol A (BPA), and release of serotonin was evaluated by CFMA. A significant decrease in the quantal content of serotonin was measured for all levels of exposure to both MEHP and BPA. The overall efficiency of the exocytotic function of MPMCs was found to be impaired by all exposure concentrations of BPA, but this efficiency was only impaired at the lowest exposure concentration of MEHP. This study illustrates the potential of CFMA as a technique for determining quantitative and biophysical chemical information in in vitro immunotoxicological studies.
Figure
Single-cell amperometry from a mast cell exposed to mono-2-ethylhexyl phthalate.  相似文献   

8.
Steroid hormone levels in human urine are convenient and sensitive indicators for the impact of phthalates and/or bisphenol A (BPA) exposure on the human steroid hormone endocrine system. In this study, a rapid and sensitive method for determination of 14 phthalate metabolites, BPA, and ten endogenous steroid hormones in urine was developed and validated on the basis of ultra-performance liquid chromatography coupled with electrospray ionization triple quadrupole mass spectrometry. The optimized mixed-mode solid phase-extraction separated the weakly acidic or neutral BPA and steroid hormones from acidic phthalate metabolites in urine: the former were determined in positive ion mode with a methanol/water mobile phase containing 10 mM ammonium formate; the latter were determined in negative ion mode with a acetonitrile/water mobile phase containing 0.1 % acetic acid, which significantly alleviated matrix effects for the analysis of BPA and steroid hormones. Dansylation of estrogens and BPA realized simultaneous and sensitive analysis of the endogenous steroid hormones and BPA in a single chromatographic run. The limits of detection were less than 0.84 ng/mL for phthalate metabolites and less than 0.22 ng/mL for endogenous steroid hormones and BPA. This proposed method had satisfactory precision and accuracy, and was successfully applied to the analyses of human urine samples. This method could be valuable when investigating the associations among endocrine-disrupting chemicals, endogenous steroid hormones, and relevant adverse outcomes in epidemiological studies.
Figure
Analytical flowchart of phthalate metabolites, bisphenol A, and endogenous steroid hormones in human urine  相似文献   

9.
Lili Yin  Yuexin Lin  Li Jia 《Mikrochimica acta》2014,181(9-10):957-965
We show that magnetic nanoparticles can be functionalized with graphene oxide (GO-MNPs) in two reaction steps, and that such nanoparticles can be used as adsorbents for the removal of phthalate esters (PAEs) from water samples. The GO-MNPs were characterized by scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, zeta potential, and vibrating sample magnetometer. The impacts of contact time, sample pH, ionic strength and sample volume on the adsorption process were investigated. The maximum adsorption capacity for diethyl phthalate was calculated to be 8.71 mg g?1 according to the Langmuir adsorption isotherm. The adsorption efficiency was tested by removal of PAEs. More than 99 % of the total quantity of PAEs (0.12 mg L?1) in 500 mL real water samples can be removed when GO-MNPs (275–330 mg) were used as an adsorbent. In addition, other species (estriol and fluorene) containing benzene rings were also almost completely removed with the PAEs using GO-MNPs, indicating that GO-MNPs are suitable for the removal of the species containing π-electron system through π-π interactions.
Fig. a
Magnetic nanoparticles can be functionalized with graphene oxide (GO-MNPs) in two reaction steps, and that such nanoparticles can be used as adsorbents for the removal of phthalate esters from water samples.  相似文献   

10.
Until recently, atmospheric pressure photoionization (APPI) has typically been used for the determination of non-polar halogenated flame retardants (HFRs) by liquid chromatography (LC) tandem mass spectrometry. In this study, we demonstrated the feasibility of utilizing liquid chromatography atmospheric pressure chemical ionization (APCI) tandem mass spectrometry (LC-APCI-MS/MS) for analysis of 38 HFRs. This developed method offered three advantages: simplicity, rapidity, and high sensitivity. Compared with APPI, APCI does not require a UV lamp and a dopant reagent to assist atmospheric pressure ionization. All the isomers and the isobaric compounds were well resolved within 14-min LC separation time. Excellent instrument detection limits (6.1 pg on average with 2.0 μL injection) were observed. The APCI mechanism was also investigated. The method developed has been applied to the screening of wastewater samples for screening purpose, with concentrations determined by LC-APCI-MS/MS agreeing with data obtained via gas chromatography high resolution mass spectrometry.
Figure
LC-APCI-MS/MS for analysis of halogenated flame reterdants  相似文献   

11.
Mass defect is the difference between the nominal and exact mass of a chemical element or compound. An intrinsic property of polyhalogenated molecules is a uniquely negative mass defect, which readily distinguishes halogenated from non-halogenated compounds in a complex mass spectrum and can be visualized by constructing a mass defect plot. This study demonstrates the utility of the mass defect plot as a powerful tool to screen gas-chromatography (ultra)high-resolution mass spectrometry data for potentially toxic and bioaccumulative halogenated compounds in a Lake Ontario lake trout, an apex species in the Great Lakes environment. Our results indicate that the sample is contaminated with polychlorinated biphenyls, terphenyls, diphenylethers, as well as other chlorinated pesticides and flame retardants that are regulated and routinely analyzed by traditional target analyses. However, the mass defect plot also displays peaks which could be traced to the presence of as yet undiscovered contaminants. These include chlorinated polycyclic aromatic hydrocarbons as well as mixed halogenated analogues of the flame retardant Dechlorane 604. The identity of the latter class of compounds is supported by experiments with genuine standards.
Fig
The mass defect plot provides an informative picture of the halogenated contaminants in a sample of Lake Ontario lake trout.  相似文献   

12.
Perfluoroalkyl substances (PFASs) are proliferated into the environment on a global scale and present in the organisms of animals and humans even in remote locations. Persistent organic pollutants of that kind therefore have stimulated substantial improvement in analytical methods. The aim of this review is to present recent achievements in PFASs determination in various matrices with different methods and its comparison to measurements of Total Organic Fluorine (TOF). Analytical methods used for PFASs determinations are dominated by chromatography, mostly in combination with mass spectrometric detection. However, HPLC may be also hyphenated with conductivity or fluorimetric detection, and gas chromatography may be combined with flame ionization or electron capture detection. The presence of a large number of PFASs species in environmental and biological samples necessitates parallel attempts to develop a total PFASs index that reflects the total content of PFASs in various matrices. Increasing attention is currently paid to the determination of branched isomers of PFASs, and their determination in food.
Figure
The aim of this review is to present recent achievements in perfluoroalkyl substances (PFASs) determination in various matrices with different methods and its comparison to measurements of Total Organic Fluorine (TOF). Increasing attention is currently paid to the determination of branched isomers of PFASs, and their determination in food.  相似文献   

13.
A new method for measuring perfluoroalkyl contaminants (PFCs) in biological matrices has been developed. An ultra-high pressure liquid chromatograph equipped with a quadrupole time-of-flight mass spectrometer (UPLC-QToF) was optimized using a continuous precursor/product ion monitoring mode. Unlike traditional targeted studies that isolate precursor/product ion pairs, the current method alternates between two ionization energy channels to continuously capture standard electrospray ionization (low energy) and collision induced dissociation (high energy) spectra. The result is the indiscriminant acquisition of paired low and high energy spectra for all constituents eluting from the chromatographic system. This technique was evaluated for the routine analysis of perfluoroalkyl species. Using this technique, linear perfluoroalkyl carboxylic acids (C4 to C14) and perfluoroalkyl sulfonates (C4, C6, C8 and C10) exhibited a linear range spanning over three orders of magnitude and were detectable at levels less than 1 pg on column with a root mean squared signal to noise ratio of 5 to 20. Lake trout (Salvelinus namaycush) and National Institutes of Standards and Technology Standard Reference Material 1946 were used to evaluate matrix effects and the accuracy of this method when applied to a whole fish extract. The current method was also evaluated as a diagnostic tool to identify unknown PFCs using experimental fragmentation patterns, mass defect filtering and Kendrick plots.
Figure
The future of toxics analysis in biological media: cataloging spectral fingerprints at targeted analysis sensitivity.  相似文献   

14.
The measurement of different mercury compounds in human blood can provide valuable information about the type of mercury exposure. To this end, our laboratory developed a biomonitoring method for the quantification of inorganic (iHg), methyl (MeHg), and ethyl (EtHg) mercury in whole blood using a triple-spike isotope dilution (TSID) quantification method employing capillary gas chromatography (GC) and inductively coupled dynamic reaction cell mass spectrometry (ICP-DRC-MS). We used a robotic CombiPAL® sample handling station featuring twin fiber-based solid-phase microextraction (SPME) injector heads. The use of two SPME fibers significantly reduces sample analysis cycle times making this method very suitable for high sample throughput, which is a requirement for large public health biomonitoring studies. Our sample preparation procedure involved solubilization of blood samples with tetramethylammonium hydroxide (TMAH) followed by the derivatization with sodium tetra(n-propyl)borate (NaBPr4) to promote volatility of mercury species. We thoroughly investigated mercury species stability in the blood matrix during the course of sample treatment and analysis. The method accuracy for quantifying iHg, MeHg, and EtHg was validated using NIST standard reference materials (SRM 955c level 3) and the Centre de Toxicologie du Québec (CTQ) proficiency testing (PT) samples. The limit of detection (LOD) for iHg, MeHg, and EtHg in human blood was determined to be 0.27, 0.12, and 0.16 μg/L, respectively.
Figure
?  相似文献   

15.
Mycotoxins are toxic fungal secondary metabolites that frequently contaminate food and feed worldwide, and hence represent a major hazard for food and feed safety. To estimate human exposure arising from contaminated food, so-called biomarker approaches have been developed as a complementary biomonitoring tool besides traditional food analysis. The first methods based on radioimmunoassays and enzyme-linked immunosorbent assays as well as on liquid chromatography were developed in the late 1980s and early 1990s for the carcinogenic aflatoxins and in the last two decades further tailor-made methods for some major mycotoxins have been published. Since 2010, there has been a clear trend towards the development and application of multianalyte methods based on liquid chromatography–electrospray ionization tandem mass spectrometry for assessment of mycotoxin exposure made possible by the increased sensitivity and selectivity of modern mass spectrometry instrumentation and sophisticated sample cleanup approaches. With use of these advanced methods, traces of mycotoxins and relevant breakdown and conjugation products can be quantified simultaneously in human urine as so-called biomarkers and can be used to precisely describe the real exposure, toxicokinetics, and bioavailability of the toxins present. In this article, a short overview and comparison of published multibiomarker methods focusing on the determination of mycotoxins and relevant excretion products in human urine is presented. Special attention is paid to the main challenges when analyzing these toxic food contaminants in urine, i.e., very low analyte concentrations, appropriate sample preparation, matrix effects, and a lack of authentic, NMR-confirmed calibrants and reference materials. Finally, the progress in human exposure assessment studies facilitated by these analytical methods is described and an outlook on probable developments and possibilities is presented.
Figure
Mycotoxin exposure assessment: traditional food analysis compared to the innovative, complementary biomarker approach  相似文献   

16.
Standard reference materials (SRMs) are homogeneous, well-characterized materials used to validate measurements and improve the quality of analytical data. The National Institute of Standards and Technology (NIST) has a wide range of SRMs that have mass fraction values assigned for legacy pollutants. These SRMs can also serve as test materials for method development, method validation, and measurement for contaminants of emerging concern. Because inter-laboratory comparison studies have revealed substantial variability of measurements of perfluoroalkyl acids (PFAAs), future analytical measurements will benefit from determination of consensus values for PFAAs in SRMs to provide a means to demonstrate method-specific performance. To that end, NIST, in collaboration with other groups, has been measuring concentrations of PFAAs in a variety of SRMs. Here we report levels of PFAAs and perfluorooctane sulfonamide (PFOSA) determined in four biological SRMs: fish tissue (SRM 1946 Lake Superior Fish Tissue, SRM 1947 Lake Michigan Fish Tissue), bovine liver (SRM 1577c), and mussel tissue (SRM 2974a). We also report concentrations for three in-house quality-control materials: beluga whale liver, pygmy sperm whale liver, and white-sided dolphin liver. Measurements in SRMs show an array of PFAAs, with perfluorooctane sulfonate (PFOS) being the most frequently detected. Reference and information values are reported for PFAAs measured in these biological SRMs.
Figure
NIST SRMs 1946 Lake Superior Fish Tissue and 1947 Lake Michigan Fish Tissue  相似文献   

17.
Rapidly synergistic cloud point extraction (RS-CPE) was coupled with thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) to result in new CPE patterns and accelerated (1?min) protocols. It is demonstrated, for the case of copper (II) ion, that TS-FF-AAS improves the sampling efficiency and the sensitivity of FAAS determinations. Problems of nebulization associated with previous methods based on the coupling of FAAS and RS-CPE are overcome. TS-FF-AAS also improves sensitivity and gives a limit of detection for copper of 0.20?μg?L-1, which is better by a factor of 32. Compared to direct FAAS, the factor is 114.
Figure
The coupling of RS-CPE with TS-FF-AAS for copper detection  相似文献   

18.
Heterogeneity of cell populations in various biological systems has been widely recognized, and the highly heterogeneous nature of cancer cells has been emerging with clinical relevance. Single-cell analysis using a combination of high-throughput and multiparameter approaches is capable of reflecting cell-to-cell variability, and at the same time of unraveling the complexity and interdependence of cellular processes in the individual cells of a heterogeneous population. In this review, analytical methods and microfluidic tools commonly used for high-throughput, multiparameter single-cell analysis of DNA, RNA, and proteins are discussed. Applications and limitations of currently available technologies for cancer research and diagnostics are reviewed in the light of the ultimate goal to establish clinically applicable assays.
Figure
?  相似文献   

19.
Thirty-one populated printed wiring boards, covering a range of 30 years of construction, and originating from various electronic devices, were investigated using different analytical procedures. Noble, precious and rare metals, as well as environmentally relevant elements were identified by EDXRF, and lead and the flame retardant (FR) indicator bromine were localised by means of microbeam EDXRF. A GC/MS procedure was developed to identify and quantify FR substances. Several sample preparation techniques were applied, optimised and compared. The method of first choice was ultrasonic extraction because it provided the best compromise between effort, cost and quality of the analytical results. Altogether, a wide variety of elements of concern, and halogenated and phosphate-based FRs were found in the investigated boards. Their occurrence is partially related to the origin and/or year of construction.
Figure
?  相似文献   

20.
Aptamer-based molecular recognition for biosensor development   总被引:1,自引:0,他引:1  
Nucleic acid aptamers are an emerging class of synthetic ligands and have recently attracted significant attention in numerous fields. One is in biosensor development. In principle, nucleic acid aptamers can be discovered to recognize any molecule of interest with high affinity and specificity. In addition, unlike most ligands evolved in nature, synthetic nucleic acid aptamers are usually tolerant of harsh chemical, physical, and biological conditions. These distinguished characteristics make aptamers attractive molecular recognition ligands for biosensing applications. This review first concisely introduces methods for aptamer discovery including upstream selection and downstream truncation, then discusses aptamer-based biosensor development from the viewpoint of signal production.
Figa
Aptamer-based molecular recognition for analyte detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号