首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purification and reversible immobilization of d-amino acid oxidase from Trigonopsis variabilis could be simultaneously accomplished by hydrophobic interaction on Phenyl Sepharose CL-4B in the presence of 50 mM pyrophosphate buffer (pH 8.5). The presence of a high salt concentration of 2M, which is generally required for the hydrophobic interactions, was not essential for the hydrophobic immobilization. The enzyme in free as well as immobilized form was optimally active between pH 7.0 and 9.0. The immobilized preparation could be reused in a batch process for the conversion of d-amino acids to α-keto acids. When the activity of the preparation dropped below practical limits, the gel could be regenerated by water wash and recharged with fresh crude extract from yeast.  相似文献   

2.
Chemical modification was evaluated to stabilize pig kidney d-amino acid oxidase (pkDAAO), which is required for analytical determination of d-amino acids. Optimization of modification conditions was performed to obtain high recovery yield and stability, and chemical modification at 30°C for 12 h with a highly concentrated enzyme solution gave dextran-conjugated pkDAAO with a 70% yield of activity. pkDAAO was stable at less than 55°C at pH 6.0, while the conjugated enzyme was stable even at 70°C. In addition, the conjugated enzyme showed decreased K m values for d-amino acids. Because of these outstanding charcteristics, this new material is expected to be available for use as a liquid assay reagent.  相似文献   

3.
The kinetics and regulation of d-xylose uptake were investigated in the efficient pentose fermentor Candida succiphila, and in Kluyveromyces marxianus, which assimilate but do not ferment pentose sugars. Active high-affinity (K m ∼ 3.8 mM; V max ∼ 15 nmol/[mg·min]) and putative facilitated diffusion low-affinity (K m ∼ 140 mM; V max ∼ 130 nmol/[mg·min]) transport activities were found in C. succiphila grown, respectively, on xylose or glucose. K. marxianus showed facilitated diffusion low-affinity (K m ∼ 103 mM; V max ∼ 190 nmol/[mg·min]) transport activity when grown on xylose under microaerobic conditions, and both a low-affinity and an active high-affinity (K m ∼ 0.2 mM; V max ∼ 10 nmol/[mg·min]) transport activity when grown on xylose under fully aerobic conditions.  相似文献   

4.
To express high-active soluble d-amino acid oxidase (DAAO), a constitutive plasmid that is regulated by a native hydantoinase promoter (PHase), was constructed. A d-amino acid oxidase gene (dao) was ligated with the PHase and cloned into pGEMKT to constitutively express protein of DAAO without the use of any inducer such as isopropyl β-d-1-thiogalactopyranoside which is poisonous to the cells and environment. The ribosome binding site region, host strain, and fermentation conditions were optimized to increase the expression level. When cultivated in a 5-m3 fermenter, the enzyme activity of JM105/pGEMKT-R-DAAO grown at 37 °C was found to be 32 U/mL and increase 16-fold over cells of BL21(DE3)/pET-DAAO grown at 28 °C. These results indicate the success of our approaches to overproducing DAAO in soluble form in Escherichia coli.  相似文献   

5.
    
We have synthesized, by enzymic and chemical means, a variety of novel polyaromatic-enzyme complexes that are extremely stable and show promise in the conversion of cellulose to glucose. Thus we have prepared a number of homo- and heteropolymeric supports (involvingl-tyrosine, pyrogallol, resorcinol, phloroglucinol, orcinol, catechol, protocatechuic acid, and various hydroxybenzoic acids) and discovered that, for example, a resorcinol-Β-d-glucosidase copolymer has high stability combined with lowK m (10.5 mM vs commercial soluble (3-d-glucosidase 9.3 mM) and high Vmax values (104 Μmol ρNP mg-1H-1 vs 85 Μmol ρNP mg-1H-1). These properties are enhanced when the copolymer is complexed with bentonite clay. The kinetic constants of the resorcinol-Β-d-glucosidase copolymer-bentonite complex wereK m = 9.6 mM andV max = 73.5 Μmol ρNP mg-1H-1. Stability has been assessed against proteolysis, organic solvents, elevated temperatures, storage, and incorporation into fresh soil. A cellulase preparation fromTrichoderma viride has also been copolymerized with a variety of phenolic macromolecules and displays varying degrees of stability and activity against carboxymethyl cellulose. The resorcinol Β-d-glucosidase-copolymer was immobilized on a PM10 ultrafiltration membrane (K m = 16.8 mM; Vmax = 42.4 (Μmol ρNP mg-1H-1) and showed enhanced thermostability, a broader pH range for maximal activity, and could be reused without loss of activity. An ultrafiltration cell, containing the membrane-immobilized resorcinol-Β-d-glucosida se copolymer, can be operated as a continuous reactor with substrate flow rates from 0.1 to 0.7 mL min-1 without decrease in product formation.  相似文献   

6.
Glucose 2-oxidase (pyranose oxidase, pyranose:oxygen-2-oxidoreductase, EC 1.1.3.10) from Coriolus versicolor catalyses the oxidation of d-glucose at carbon 2 in the presence of molecular O2 producing d-glucosone (2-keto-glucose and d-arabino-2-hexosulose) and H2O2. It was used to convert d-glucose into d-glucosone at moderate pressures (i.e. up to 150 bar) with compressed air in a modified commercial batch reactor. Several parameters affecting biocatalysis at moderate pressures were investigated as follows: pressure, [enzyme], [glucose], pH, temperature, nature of fluid and the presence of catalase. Glucose 2-oxidase was purified by immobilized metal affinity chromatography on epoxy-activated Sepharose 6B-IDA-Cu(II) column at pH 6.0. The rate of bioconversion of d-glucose increased with the pressure since an increase in the pressure with compressed air resulted in higher rates of conversion. On the other hand, the presence of catalase increased the rate of reaction which strongly suggests that H2O2 acted as inhibitor for this reaction. The rate of bioconversion of d-glucose by glucose 2-oxidase in the presence of either nitrogen or supercritical CO2 at 110 bar was very low compared with the use of compressed air at the same pressure. The optimum temperature (55°C) and pH (5.0) of d-glucose bioconversion as well as kinetic parameters for this enzyme were determined under moderate pressure. The activation energy (E a) was 32.08 kJ mol−1 and kinetic parameters (V max, K m, K cat and K cat/K m) for this bioconversion were 8.8 U mg−1 protein, 2.95 mM, 30.81 s−1 and 10,444.06 s−1 M−1, respectively. The biomass of C. versicolor as well as the cell-free extract containing glucose 2-oxidase activity were also useful for bioconversion of d-glucose at moderate pressures. The enzyme was apparently stable at moderate pressures since such pressures did not affect significantly the enzyme activity.  相似文献   

7.
Production of l-glutamate oxidase (GluOx) by Streptomyces sp. N1 was investigated by controlling culture pH at 6.2, 6.7, 7.0, and 7.3 in a 5-l stirred fermentor. The corresponding GluOx activities obtained were 2.8, 4.2, 6.0, and 5.3 U/mL, respectively. Microbial growth was inhibited by increasing the medium pH from 6.2 to 7.0. The inhibitory effect was also observed in plate colony growth under incubation with a different initial pH value. The effect of calcium on GluOx production was also studied in the pH-controlled bioreactor. When the culture pH was controlled at 6.2 or 7.0, GluOx production could not be improved or was only improved slightly by initial addition of calcium to the medium. However, when the culture pH was kept at 6.7, initial Ca2+ addition (60 mM) conspicuously enhanced GluOx production up to 9.3 U/mL, which was about twofold of that without Ca2+ addition. The enzyme production level was the highest ever reported in the literature. During fermentation the inhibition of cell growth by Ca2+ addition was observed. For the morphological changes, the cells mostly existed as pellets in the medium without Ca2+ addition, whereas few pellets were found and almost all the cells were dispersed mycelia in the broth with Ca2+ addition.  相似文献   

8.
The Fusarium spp. (Dactylium dendroides) galactose oxidase was expressed in Aspergillus oryzae and Fusarium venenatum hosts. Under the control of an A. niger α-amylase or a Fusarium trypsin promoter, high level galactose oxidase expression was achieved. The recombinant oxidase expressed in the A. oryzae host was purified and characterized. The purified enzyme had a molecular weight of 66 k Da on sodium dodecyl sulfate-polymerase gel electrophoresis (SDS-PAGE) and 0.4 mol copper atom per mole protein. The stoichiometry increased to 1.2 after a Cu saturation. Based on a peroxidase-coupled assay, the enzyme preparation showed an activity of 440 turnover per second toward d-galactose (0.1 M) at pH7 and 20°C. The enzyme had an optimal temperature of 60°C at pH 6.0 and an activation free Gibbs energy of 33 kJ/mol. A series of d-galactose derivatives was tested as the reducing substrate for the oxidase. The difference in activity was interpreted by the stereospecificity of the oxidase toward the substituents in the pyranose substrate, particularly on the C5 and the cyclic hemiacetal O sites. The recombinan toxidase could act on some galactose-containing polysaccharides, such as guar gum, but was not able to oxidize several common redox compounds that lacked a primary alcohol functional group.  相似文献   

9.
Cyclodextrin glycosyltransferase (CGTase) isolated and purified from Paenibacillus sp. A11 was immobilized on various carriers by covalent linkage using bifunctional agent glutaraldehyde. Among tested carriers, alumina proved to be the best carrier for immobilization. The effects of several parameters on the activation of the support and on the immobilization of enzyme were optimized. The best preparation of immobilized CGTase retained 31.2% of its original activity. After immobilization, the enzymatic properties were investigated and compared with those of the free enzyme. The optimum pH of the immobilized CGTase was shifted from 6.0 to 7.0 whereas optimum temperature remained unaltered (60°C). Free and immobilized CGTase showed similar pH stability profile but the thermal stability of the immobilized CGTase was 20% higher. Kinetic data (K M and V max) for the free and immobilized enzymes were determined from the rate of β-CD formation and it was found that the immobilized form had higher K M and lower V max. The immobilized CGTase also exhibited higher stability when stored at both 4°C and 25°C for 2 months. The enzyme immobilized on alumina was further used in a batch production of 2-O-α-glucopyranosyl-l-ascorbic acid (AA-2G) from ascorbic acid and β-cyclodextrin. The yield of AA-2G was 2.92% and the immobilized CGTase retained its activity up to 74.4% of the initial catalytic activity after being used for 3 cycles. The immobilized CGTase would have a promising application in the production of various transglycosylated compounds and in the production of cyclodextrin by the hydrolysis of starch.  相似文献   

10.
The filamentous fungus Sclerotinia sclerotiorum, grown on a xylose medium, was found to excrete one β-glucosidase (β-glu x). The enzyme was purified to apparent homogeneity by ammonium sulfate precipitation, gel filtration, anion-exchange chromatography, and high-performance liquid chromatography (HPLC) gel filtration chromatography. Its molecular mass was estimated to be 130 kDa by HPLC gel filtration and 60 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis, suggesting that β-glu x may be a homodimer. For p-nitrophenyl β-d-glucopyranoside hydrolysis, apparent K m and V max values were found to be 0.09 mM and 193 U/mg, respectively, while optimum temperature and pH were 55–60°C and pH 5.0, respectively. β-Glu x was strongly inhibited by Fe2+ and activated about 35% by Ca2+. β-Glu x possesses strong transglucosylation activity in comparison with commercially available β-glucosidases. The production rate of total glucooligosaccharides (GOSs) from 30% cellobiose at 50°C and pH 5.0 for 6 h with 0.6 U/mL of enzyme preparation was 80 g/L. It reached 105 g/L under the same conditions when using cellobiose at 350 g/L (1.023 M). Finally, GOS structure was determined by mass spectrometry and 13C nuclear magnetic resonance spectroscopy.  相似文献   

11.
A 66-kDa thermostable family 1 Glycosyl Hydrolase (GH1) enzyme with β-glucosidase and β-galactosidase activities was purified to homogeneity from the seeds of Putranjiva roxburghii belonging to Euphorbiaceae family. N-terminal and partial internal amino acid sequences showed significant resemblance to plant GH1 enzymes. Kinetic studies showed that enzyme hydrolyzed p-nitrophenyl β-d-glucopyranoside (pNP-Glc) with higher efficiency (K cat/K m = 2.27 × 104 M−1 s−1) as compared to p-nitrophenyl β-d-galactopyranoside (pNP-Gal; K cat/K m = 1.15 × 104 M−1 s−1). The optimum pH for β-galactosidase activity was 4.8 and 4.4 in citrate phosphate and acetate buffers respectively, while for β-glucosidase it was 4.6 in both buffers. The activation energy was found to be 10.6 kcal/mol in the temperature range 30–65 °C. The enzyme showed maximum activity at 65 °C with half life of ~40 min and first-order rate constant of 0.0172 min−1. Far-UV CD spectra of enzyme exhibited α, β pattern at room temperature at pH 8.0. This thermostable enzyme with dual specificity and higher catalytic efficiency can be utilized for different commercial applications.  相似文献   

12.
Several reports exist in the literature citing the decrease in conversion rates of organic-phase catalytic synthesis reactions when acetic acid is present as a reaction component. This inhibition is thought to result from damage to either the hydration layer-protein interaction or the overall enzyme structure. In this work, the inhibitory effect of acetic acid on lipase enzyme activity was ameliorated by conducting syntheses under acetic acid-limiting conditions in a fed-batch system, resulting in higher product yields. Periodic additions of acetic acid at levels of 40 mM or less gave maximum yields of 65% conversion for the reaction of citronellol and acetic acid to form citronellyl acetate. The enzyme used was a fungal lipase fromMucor miehei, and was immobilized on macroporous synthetic resin (a Novo lipozyme Novo Nordisk, Denmark). These results represent a fourfold improvement over batch runs reported in the literature for direct esterification of terpene alcohol with acetic acid using lipozyme as a catalytic agent.  相似文献   

13.
The production of l-DOPA using l-tyrosine as substrate, the enzyme tyrosinase (EC 1.14.18.1) as biocatalyst, and l-ascorbate as reducing agent for the o-quinones produced by the enzymatic oxidation of the substrates was studied. Tyrosinase immobilization was investigated on different supports and chemical agents: chitin flakes activated with hexamethylenediamine and glutaraldehyde as crosslinking agent, chitosan gel beads, chitosan gel beads in the presence of glutaraldehyde, chitosan gel beads in the presence of polyvinyl pyrrolidone, and chitosan flakes using glutaraldehyde as crosslinking agent. The last support was considered the best using as performance indexes the following set of immobilization parameters: efficiency (90.52%), yield (11.65%), retention (12.87%), and instability factor (0.00). The conditions of immobilization on chitosan flakes were optimized using a two-level full factorial experimental design. The independent variables were enzyme-support contact time (t), glutaraldehyde concentration (G), and the amount of enzyme units initially offered (U C). The response variable was the total units of enzymatic activity shown by the immobilized enzyme (U IMO). The optimal conditions were t=24 h, G=2% (v/v), and U C=163.7 U. Under these conditions the total units of enzymatic activity shown by the immobilized enzyme (U IMO) was 23.3 U and the rate of l-DOPA production rate was 53.97 mg/(L·h).  相似文献   

14.
The composition of complexes formed upon the extraction of UVI and ThIV nitrates with O-n-nonyl(N,N-dibutylcarbamoylmethyl) methyl phosphinate (L) from solutions of nitric acid without additional solvent was determined by 31P NMR spectroscopy. The structures of the complexes formed were studied by IR spectroscopy. Uranium(VI) is extracted from 3 and 5 M solutions of HNO3 as the [UO2(L)2(NO3)2] complex, while thorium(IV) is extracted from 5 M HNO3 as the [Th(L)3(NO3)3]+·NO 3 complex. In both cases, ligand L has bidentate coordination. Ligand L contacts with 3 and 5 M nitric acid to form adducts L·HNO3 and L· (HNO3)2, respectively. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2460–2464, November, 2005.  相似文献   

15.
Four myrosinase (β-thioglucosidase EC. 3.2.3.1) and seven disaccharase (β-fructofuranosidase, EC. 3.2.1.26) isoenzymes were isolated from turnip leaves. The most active enzymes were isolated in pure form. Myrosinase and disaccharase mol wt was 62.0 × 103 and 69.5 × 103 dalton, respectively, on the basis of gel filtration on Sephadex G-200. Myrosinase pH profile showed high activity between pH 5 and 7 with the optimum at pH 5.5. The purified enzyme was heat-stable for 60 min at 30°C with only loss of 24% of activity. Its activity is strongly inhibited (100%) by Pb2+, Ba2+, Cu2+ and Ca2+ ions, and activated (70%) by EDTA at 0.04M. The pure enzyme failed to hydrolyze amylose, glycogen, lactose, maltose, and sucrose. TheK m andV max values of myrosinase using sinigrin as specific substrate was 0.045 mM and 2.5 U, respectively. The maximal activity of disaccharase enzyme was obtained at pH 4–5 and 35–37°C. The enzyme was heat-stable at 30°C for 30 min with only 10% loss of its activity. Its activity is strongly activated (70–240%) by Ca2+, Ba2+, Cu2+, and EDTA at 0.01M. The enzyme activity is specific to the disaccharide sucrose and failed to hydrolyze other disaccharides (maltose and lactose). TheK m andV max of disaccharase were 0.123 mM and 3.33 U, respectively.  相似文献   

16.
Laccase activity was detected in a soil bacterium Stenotrophomonas maltophilia AAP56 identified by biochemical and molecular methods. It was produced in cells at the stationary growth phase in Luria Bertani (LB) medium added by 0.4 mM copper sulfate. The addition of CuSO4 in culture medium improved production of laccase activity. However, one laccase enzyme was detected by native polyacrylamide gel electrophoresis. The enzyme showed syringaldazine (K m = 53 μM), 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (K m = 700 μM), and pyrocatechol (K m = 25 μM) oxidase activity and was activated by addition of 0.1% (v/v) Triton-X-100 in the reaction mixture. Moreover, the laccase activity was increased 2.6-fold by the addition of 10 mM copper sulfate; the enzyme was totally inhibited by ethylenediaminetetraacetic acid (5 mM), suggesting that this laccase is a metal-dependant one. Decolorization activity of some synthetic dyes (methylene blue, methyl green, toluidine blue, Congo red, methyl orange, and pink) and the industrial effluent (SITEX Black) was achieved by the bacteria S. maltophilia AAP56 in the LB growth medium under shaking conditions.  相似文献   

17.
The reactions of the Pd/ZrO2/SO4-catalyzed oxidation of ethylene, propene, and but-1-ene in a 0.1–1.5 M solution of perchloric acid with iron(III) aqua ions to carbonyl compounds, viz., acetaldehyde, acetone, and methyl ethyl ketone, respectively, were studied. The formation of palladium nanoparticles (5 nm) in solution on contact of the initial heterogeneous Pd/ZrO2/SO4 catalyst with perchloric acid was proved by transmission electron microscopy. The palladium nanoparticles are assumed to play the key role in olefin oxidation with the iron(III) aqua ions. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 627–632, April, 2006.  相似文献   

18.
The use of enantiomerically pure cyclic chlorophosphite obtained by the reaction of PCl3 withN,N,N′,N′-tetramethyldiamide of naturall-(+)-tartaric acid for analysis of the enantiomeric composition of chiral primary and secondary alcohols by31P NMR spectroscopy is considered. Translated fromIzvestiya Akademii Nauk., Seriya Khimicheskaya, No. 1, pp. 172–175, January, 1998.  相似文献   

19.
Background: Seeds ofLathyrus sativus, a legume plant, contain 3-oxalyl and 2,3-dioxalyl DAP (O-DAP), neurotoxins which when consumed causes Neurolathyrism or Osteolathyrism, in humans, affecting nervous system and bone formation respectively. Some microorganisms viz virulent and non-virulentSalmonella typhimurium, Salmonella typhi and Pseudomonad have been shown to detoxifyL-α,β-diaminopropionate (DAP), the immediate precursor of O-DAP. Result: The gene coding for diaminopropionate ammonia lyase (DAPAL) which detoxifies DAP was cloned from nonvirulentS. typhimurium PU011 intoEscherichia coli DH5α and the nucleotides sequenced (1212 bp). Whereas the specific enzyme activity of DAPAL obtained from recombinantE. coli PU018 was 0.346 U/mg, the specific activity of the enzyme from nonvirulentS. typhimurium PU011 was 0.351 U/mg. The DAPAL corresponding to 43 kDa protein was found both in nonvirulentS. typhimurium PU011 andE. coli PU018. The Km value was found to be 0.740 mM and 0.680 mM forS. typhimurium PU011 and 0.741 mM and 0.683 mM forE. coli PU018 when grown in minimal medium (MM+DAP) andL. sativus seed extracts respectively, indicating that both of them were capable of utilizing the neurotoxins present inL. sativus seeds. The biomass, enzyme production and the effect of pH and temperature on DAPAL enzyme activity from both non-virulentS. typhimurium PU011 andE. coli PU018 were found to be similar. Conclusion: The recombinantE. coli PU018 as well as non-virulentS. typhimurium PU011 are as good as pathogenicS. typhimurium in detoxifying DAP, the immediate precursor of O-DAP present inL. sativus seeds.  相似文献   

20.
An extracellular chitinase fromAspergillus cerneus was purified by ammonium sulphate precipitation, gel filtration through Sephadex G-100, preparative HPLC chromatography and large slabs of polyacry-lamide gel electrophoresis.The mol wt of the enzyme was estimated to be 25000 by SDS gel electrophoresis, and it contained 9.37% (w/w) carbohydrate residue, as glucose. The pattern of its amino acid composition showed high contents of asparagine, serine, and threonine. The enzyme was active at pH 5.2 and 50°C. The Km value of the enzyme was 4.37 mM (expressed asN-acetylglucosamine). The enzyme was stable at pH 3–9, whereas it was unstable at 70°C or more. Calcium and Mg ions slightly activated the enzyme, whereas Hg2+, I2, andp-chloromercuribenzoate inhibited the enzyme activity. The enzyme hydrolyzed chitin, colloidal chitin, glycol chitin, and chitooligsac-charides, but did not hydrolyze chitosan, starch, xylan, inulin, and cellulose. The lysis ofA. niger and Micorcoccus lysodeikticus cell walls by the action of the enzyme was also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号