首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Temperature dependent behavior of the responsivity of InAs/GaAs quantum dot infrared photodetectors was investigated with detailed measurement of the current gain. The current gain varied about two orders of magnitude with 100 K temperature change. Meanwhile, the change in quantum efficiency is within a factor of 10. The dramatic change of the current gain is explained by the repulsive coulomb potential of the extra carriers in the QDs. With the measured current gain, the extra carrier number in QDs was calculated. More than one electron per QD could be captured as the dark current increases at 150 K. The extra electrons in the QDs elevated the Fermi level and changed the quantum efficiency of the QDIPs. The temperature dependence of the responsivity was qualitatively explained with the extra electrons.  相似文献   

2.
InAs/GaAs quantum dot infrared photodetectors were fabricated with quantum dots grown at three different temperatures. Large detection wavelength shift (5–14.5 μm) was demonstrated by changing 40 degrees of the epitaxy temperature. The smaller quantum dots grown at lower temperature generate 14.5 μm responses. The detectivity of the normal incident 15 μm QDIP at 77 K is 3 × 108 cm Hz1/2/W. A three-color detector was also demonstrated with quantum dots grown at medium temperature. The three-color detection comes from two groups of different sizes of dots within one QD layer. This new type of multicolor detector shows unique temperature tuning behavior that was never reported before.  相似文献   

3.
The detectivity of Quantum dot infrared photodetectors (QDIPs) has always attracted a lot attention as a very important performance parameter. In the paper, based on the theoretical model for the detectivity with the consideration of the common influence of the microscale electron transport, the nanoscale electron transport and the self-consistent potential distribution of the electrons, the dependence of the detectivity of the QDIP on temperature is discussed by analyzing the influence of the temperature on the average electrons number in a quantum dot. Specifically, the average electrons number in a quantum dot shows different change trends (from the increase to decrease) with the increase of the temperature, but the detectivity presents the single decrease trend with the temperature, which can provide the designers with the theoretical guidance for the performance optimization of the QDIP devices.  相似文献   

4.
High responsivity, LWIR dots-in-a-well quantum dot infrared photodetectors   总被引:1,自引:0,他引:1  
In this paper we report studies on normal incidence, InAs/In0.15Ga0.85As quantum dot infrared photodetectors (QDIPs) in the dots-in-a-well (DWELL) configuration. Three QDIP structures with similar dot and well dimensions were grown and devices were fabricated from each wafer. Of the three devices studied, the first served as the control, the second was grown with an additional 400 Å AlGaAs blocking layer, and the third was grown on a GaAs n+ substrate with the intention of testing a single pass geometry. Spectral measurements on all three devices show one main peak in the long-wave IR (≈8 μm). The absorption was attributed to the bound-to-bound transition between the ground state of the InAs quantum dot and the ground state of the In0.15Ga0.85As well. Calibrated peak responsivity and peak detectivity measurements were performed on each device at 40, 60, and 80 K. For the same temperatures, frequency response measurements from 20 Hz to 4 kHz at a bias of Vb=−1 V were also performed. The addition of the blocking layer was shown to slightly enhance responsivity, which peaked at 2.4 A/W at 77 K, Vb=−1 V and responsivity was observed to be significantly reduced in the single pass (n+ substrate) sample. The rolloff of the frequency response was observed to be heavily dependent on temperature, bias, and irradiance. The results from the characterization of each sample are reported and discussed.  相似文献   

5.
Ion implantation is a postgrowth processing technique which, when combined with annealing, can be used to tune the absorption wavelength of quantum well devices. We have implanted and annealed, three different quantum well infrared photodetector structures, and measured the absorption spectra of the samples by Fourier transform spectroscopy. The peak absorption wavelength shift of each structure has been calculated as a function of diffusion length by simulating the diffusion processes. We found different diffusion rates for the structures and attribute this to different numbers of as-grown defects. Our results indicate that agglomeration of single defects into defect clusters limits the ability of ion implantation to tune the wavelength of a structure with a higher number of as-grown defects. Thus, a structure with the lowest number of as-grown defects is most useful for fabricating a multi-color quantum well photodetector by ion implantation, because in this case ion implantation can enhance the diffusion rate considerably leading to large red- shift in peak absorption wavelength.  相似文献   

6.
Quantum dot infrared photodetectors (QDIPs) have made significant progress after their early demonstration about a decade ago. We review the progress made by QDIP technology over the last few years and compare QDIPs with quantum well infrared photodetectors (QWIPs). It is shown that the performance of QDIPs has significantly improved using novel architectures such as dots‐in‐a‐well designs, and large‐format (1 K × 1 K) focal plane arrays have been realized. However, even though there are significant reports of performance parameters better than QWIPs from single‐pixel devices, QDIP‐based focal plane arrays are still a factor of 3–5 worse in terms of noise equivalent temperature difference. We discuss the reasons for the performance gap and the key scientific and technological challenges that need to be addressed to achieve the full potential of QD‐based technology.  相似文献   

7.
The sub-monolayer quantum dot infrared photodetector (SML-QDIP) was proposed as an alternative to the standard QDIP based on Stranski–Krastanow (SK) quantum dots. Theoretical modeling indicates that the normal-incidence photo-response observed in the initial SML-QDIP devices, originally attributed to 3D quantum confinement effect, is most likely the result of optical cavity scattering. Modeling results also suggest candidate SML-QDIP structures with improved intrinsic normal incidence absorption.  相似文献   

8.
以CdSe纳米晶体为核,用胶体化学的方法,通过化学替代反应,获得了不同阱层或不同垒层的CdSeHgSeCdSe量子点量子阱(QDQW)晶体.紫外可见光吸收谱研究表明,通过调节QDQW中间HgSe阱层的厚度从0.9nm至0,可以调节QDQW颗粒的带隙从1.8变化至2.1eV,实现QDQW纳米晶体的剪裁.光致荧光(PL)谱研究显示,QDQW形成后,CdSeHgSe纳米颗粒表面态得到钝化,显现出发光强度加强的带边荧光峰.利用有效质量近似模型,对QDQW晶粒内部电子的1s—1s态进行了估算,估算结果总体趋势与实验数据相符 关键词: 量子点量子阱晶体 能带剪裁 加强的带边荧光峰  相似文献   

9.
The results of a detailed characterization study on a systematic set of InAs/GaAs self-assembled quantum dot infrared photodetectors are presented. A simple physical picture is also discussed to account for the main observed features. Photoresponse characteristics in a wide spectral region from the mid- to far-infrared are reported. Clear polarization behaviors with a dominant P-polarized response in the mid-infrared and a strong S-response in the far-infrared regions are shown. These behaviors can be qualitatively understood in view of the quantum dot shape of a large in-plane diameter and a small height in the growth direction. With a set of three samples, effects of the number of electrons per quantum dot on the spectra are investigated.  相似文献   

10.
Quantum dot structures designed for multi-color infrared detection and high temperature (or room temperature) operation are demonstrated. A novel approach, tunneling quantum dot (T-QD), was successfully demonstrated with a detector that can be operated at room temperature due to the reduction of the dark current by blocking barriers incorporated into the structure. Photoexcited carriers are selectively collected from InGaAs quantum dots by resonant tunneling, while the dark current is blocked by AlGaAs/InGaAs tunneling barriers placed in the structure. A two-color tunneling-quantum dot infrared photodetector (T-QDIP) with photoresponse peaks at 6 μm and 17 μm operating at room temperature will be discussed. Furthermore, the idea can be used to develop terahertz T-QD detectors operating at high temperatures. Successful results obtained for a T-QDIP designed for THz operations are presented. Another approach, bi-layer quantum dot, uses two layers of InAs quantum dots (QDs) with different sizes separated by a thin GaAs layer. The detector response was observed at three distinct wavelengths in short-, mid-, and far-infrared regions (5.6, 8.0, and 23.0 μm). Based on theoretical calculations, photoluminescence and infrared spectral measurements, the 5.6 and 23.0 μm peaks are connected to the states in smaller QDs in the structure. The narrow peaks emphasize the uniform size distribution of QDs grown by molecular beam epitaxy. These detectors can be employed in numerous applications such as environmental monitoring, spectroscopy, medical diagnosis, battlefield-imaging, space astronomy applications, mine detection, and remote-sensing.  相似文献   

11.
Bound-to-continuum normal-incidence absorption in p-type GaAs/AlGaAs quantum well infrared photodetectors (QWIPs) is strongest when the second light-hole (LH2) level is resonant with the top of the valence band QW. However, we found that such absorption saturates as a function of doping in the well. Using the envelope-function model (EFA), this paper shows that moving the LH2 resonance slightly deeper into the continuum avoids absorption saturation and produces optimal p-QWIP response. A suitable set of mid-IR samples was grown to test this conjecture and their photoresponse measured. The results indicate that absorption can be more than doubled through the use of the new p-QWIP designs. This result is explained by showing that the line of resonances in the continuum as a function of the in-plane wave vector eventually becomes a bound LH2 band in the well at some critical wave vector. Therefore, it is possible to avoid absorption saturation by matching this critical wave vector (i.e., well width and/or well depth) with the Fermi wave vector (i.e., doping in the well) for the desired QWIP (i.e., cutoff wavelength).  相似文献   

12.
The effect of electric field on exciton states and optical properties in zinc-blende (ZB) InGaN/GaN quantum dot (QD) are investigated theoretically in the framework of effective-mass envelop function theory. Numerical results show that the electric field leads to a remarkable reduction of the ground-state exciton binding energy, interband transition energy, oscillator strength and linear optical susceptibility in InGaN/GaN QD. It is also found that the electric field effects on exciton states and optical properties are much more obvious in QD with large size. Moreover, the ground-state exciton binding energy and oscillator strength are more sensitive to the variation of indium composition in InGaN/GaN QD with small indium composition. Some numerical results are in agreement with the experimental measurements.  相似文献   

13.
The linear and nonlinear optical properties of parabolic quantum dots in which two electrons interact with each other through both coulomb repulsion and longitudinal-optical phonon are studied by using the matrix diagonalization method. With typical semiconducting GaAs-based materials, the linear, third-order nonlinear, total optical absorption coefficients and the optical refractive index have been examined. The effects of different electron-phonon coupling strengths on the linear and nonlinear optical properties are also predicted.  相似文献   

14.
Thanks to their wavelength diversity and to their excellent uniformity, Quantum well infrared photodetectors (QWIP) emerge as potential candidates for astronomical or defense applications in the very long wavelength infrared (VLWIR) spectral domain. However, these applications deal with very low backgrounds and are very stringent on dark current requirements. In this paper, we present the full electro-optical characterization of a 15 μm QWIP, with emphasis on the dark current measurements. Data exhibit striking features, such as a plateau regime in the I(V) curves at low temperature (4–25 K). We show that present theories fail to describe this phenomenon and establish the need for a fully microscopic approach.  相似文献   

15.
An investigation of the nonlinear optical rectification of a hydrogenic impurity, which is in a two-dimensional disc-like quantum dot (QD) with parabolic confinement potential, has been performed by using the perturbation method in the effective mass approximation. Both the electric field and the confinement effects on the energy are investigated in detail. The results are presented as a function of the incident photon energy for the different values of the confinement strength and the electric field. It is found that the nonlinear optical properties of hydrogenic impurity states in a disc-like QD are strongly affected by the confinement strength and the electric field.  相似文献   

16.
A study of intersubband transitions in quantum well infrared detectors working at high temperatures has been reported. This study allows a greater tunability in the device designs, with the ability to control the peak wavelength, the absorption coefficient, the dark current, the quantum efficiency and the detectivity of the modeled structure operating around 3.3 μm wavelength. The detection energy and absorption coefficient dependences with an applied electric field are given. Then, the electro-optic performances of the modeled mid-infrared detector are estimated, the dark current dependence with the applied voltage and temperature as well as the quantum efficiency and the detectivity are investigated and discussed. High detectivities were found at high temperatures revealing the good performances of the designed photodetector, especially at 3.3 μm wavelength.  相似文献   

17.
Optical absorption coefficients and refractive index changes associated with intersubband transition of an off-center hydrogenic impurity in a spherical quantum dot (QD) with Gaussian confinement potential are theoretically investigated. Our results show that the optical absorption coefficients in a spherical QD are 2–3 orders of magnitude higher than those in quantum wells and are 2–3 orders smaller than those in a disk-like QD. It is found that the optical absorptions and the optical refractive index are strongly affected not only by the confinement barrier height, dot radius but also by the position of the impurity.  相似文献   

18.
The problem of an electron interacting with longitudinal-optical (LO) phonons is investigated in an NN-dimensional quantum dot with symmetric Gaussian confinement in all directions using the Rayleigh–Schrödinger perturbation theory, a variant of the canonical transformation method of Lee–Low–Pines, and the sophisticated apparatus of the Feynman–Haken path-integral technique for the entire range of the coupling parameters and the results for N=2N=2 and N=3N=3 are obtained as special cases. It is shown that the polaronic effects are quite significant for small dots with deep confining potential well and the parabolic potential is only a poor approximation of the Gaussian confinement. The Feynman–Haken path-integral technique in general gives a good upper bound to the ground state energy for all values of the system parameters and therefore is used as a benchmark for comparison between different methods. It is shown that the perturbation theory yields for the ground state polaron self-energy a simple closed-form analytic expression containing only Gamma functions and in the weak-coupling regime it provides the lowest energy because of an efficient partitioning of the Gaussian potential and the subsequent use of a mean-field kind of treatment. The polarization potential, the polaron radius and the number of virtual phonons in the polaron cloud are obtained using the Lee–Low–Pines–Huybrechts method and their variations with respect to different parameters of the system are discussed.  相似文献   

19.
The nonlinear optical properties of a D system confined in a spherical quantum dot represented by a Gaussian confining potential are studied. The great advantage of our methodology is that the model potential possesses the finite height and range. Calculations are carried out by using the method of numerical diagonalization of Hamiltonian matrix within the effective-mass approximation. We calculate the linear, third-order nonlinear and total optical absorption coefficients under the density matrix formalism. Numerical results for GaAs − Ga1 − xAlxAs QDs are presented. Our results show that the optical absorption coefficients in a spherical QD are much larger than their values for GaAs quantum wells. It is found that optical absorptions are strongly affected not only the confinement barrier height, dot radius, the electron-impurity interaction but also the position of the impurity.  相似文献   

20.
This paper presents a method to evaluate and improve the performance of quantum dot infrared photodetectors (QDIPs). We proposed a device model for QDIPs. The developed model accounts for the self-consistent potential distribution, features of the electron capture and transport in realistic QDIPs in dark and illumination conditions. This model taking the effect of donor charges on the spatial distribution of the electric potential in the QDIP active region. The model is used for the calculation of the dark current, photocurrent and detectivity as a function of the structural parameters such as applied voltage, doping QD density, QD layers, and temperature. It explains strong sensitivity of dark current to the density of QDs and the doping level of the active region. In order to confirm our models and their validity on the practical applications, a comparison between the results obtained by proposed models and that experimentally published are conducted and full agreement is observed. Results show the effectiveness of methodology introduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号