首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
有中学化学参考资料题:0.10 mol/L的NH4Cl和(NH4)2SO4溶液哪个pH值高?这似乎是个中学生可做的简单题目,仔细考虑不是如此.如果简单地认为盐酸和硫酸都是强酸,而硫酸是二元酸,硫酸铵溶液中铵盐浓度为0.20 mol/L,那么NH4Cl溶液pH高,那是不妥的.硫酸是二元酸,第一个氢离子能完全电离,第二个氢离子部分电离,如此考虑情况怎么样呢?是不是答案发生变化?这要通过计算来说明.  相似文献   

2.
The conversion efficiencies reported for Tin(Sn)halide-based perovskite solar cells(PSCs)fall a large gap behind those of lead halide-based PSCs,mainly because of poor film quality of the former.Here we report an efficient strategy based on a simple secondary crystallization growth(SCG)technique to improve film quality for tin halide-based PSCs by applying a series of functional amine chlorides on the perovskite surface.They were discovered to enhance the film crystallinity and suppress the oxidation of Sn2+remarkably,hence reduce trap state density and non-irradiative recombination in the absorber films.Furthermore,the SCG film holds the band levels matching better with carrier transport layers and herein favoring charge extraction at the device interfaces.Consequently,a champion device efficiency of 8.07% was achieved alo ng with significant enhancements in VOC and JSC,in contrast to 5.35% of the control device value.Moreover,the SCG film-based devices also exhibit superior stability comparing with the control one.This work explicitly paves a novel and general strategy for developing high performance lead-free PSCs.  相似文献   

3.
Mixed cation and anion based perovskites solar cells exhibited enhanced stability under outdoor conditions,however,it yielded limited power conversion efficiency when TiO2 and Spiro-OMeTAD were employed as electron and hole transport layer(ETL/HTL)respectively.The inevitable interfacial recombination of charge carriers at ETL/perovskite and perovskite/HTL interface diminished the efficiency in planar(n-i-p)perovskite solar cells.By employing computational approach for uni-dimensional device simulator,the effect of band offset on charge recombination at both interfaces was investigated.We noted that it acquired cliff structure when the conduction band minimum of the ETL was lower than that of the perovskite,and thus maximized interfacial recombination.However,if the conduction band minimum of ETL is higher than perovskite,a spike structure is formed,which improve the performance of solar cell.An optimum value of conduction band offset allows to reach performance of 25.21%,with an open circuit voltage(VOC)of 1231 mV,a current density JSC of 24.57 mA/cm2 and a fill factor of 83.28%.Additionally,we found that beyond the optimum offset value,large spike structure could decrease the performance.With an optimized energy level of Spiro-OMeTAD and the thickness of mixed-perovskite layer performance of 26.56% can be attained.Our results demonstrate a detailed understanding about the energy level tuning between the charge selective layers and perovskite and how the improvement in PV performance can be achieved by adjusting the energy level offset.  相似文献   

4.
Carbon nanotubes(CNTs),as one-dimensional nanomaterials,show great potential in energy conversion and storage due to their efficient electrical conductivity and mass transfer.However,the security risks,time-consuming and high cost of the preparation process hinder its further application.Here,we develop that a negative pressure rather than a following gas environment can promote the generation of cobalt and nitrogen co-doped CNTs(Co/N-CNTs) by using cobalt zeolitic imidazolate framework(ZIF-67) as a precursor,in which the negative pressure plays a key role in adjusting the size of cobalt nanoparticles and stimulating the rearragement of carbon atoms for forming CNTs.Importantly,the obtained Co/N-CNTs,with high content of pyridinic nitrogen and abundant graphitized structure,exhibit superior catalytic activity for oxygen reduction reaction(ORR) with half-wave potential(E1/2) of 0.85 V and durability in terms of the minimum current loss(2%) after the 30,000 s test.Our development provides a new pathway for large-scale and cost-effective preparation of metal-doped CNTs for various applications.  相似文献   

5.
Bioimaging,as a powerful and helpful tool,which allows people to investigate deeply within living organisms,has contributed a lot for both clinical theranostics and scientific research.Pure organic room temperature phosphorescence(RTP)materials with the unique features of ultralong luminescence lifetime and large Stokes shift,can efficiently avoid biological autofluorescence and scattered light through a time-resolved imaging modality,and thus are attracting increasing attention.This review classifies pure organic RTP materials into three categories,including small molecule RTP materials,polymer RTP materials and supramolecular RTP materials,and summarizes the recent advances of pure organic RTP materials for bioimaging applications.  相似文献   

6.
The pressing demand for high-energy/power lithium-ion batteries requires the deployment of cathode materials with higher capacity and output voltage.Despite more than ten years of research,high-voltage cathode mate-rials,such as high-voltage layered oxides,spinel LiNi0.5Mn1.5O4,and high-voltage polyanionic compounds still cannot be commercially viable due to the instabilities of standard electrolytes,cathode materials,and cathode electrolyte interphases under high-voltage operation.This paper summarizes the recent advances in addressing the surface and interface issues haunting the application of high-voltage cathode materials.The understanding of the limitations and advantages of different modification protocols will direct the future endeavours on advancing high-energy/power lithium-ion batteries.  相似文献   

7.
A generic coarse-grained bead-and-spring model,mapped onto comb-shaped polycarboxylate-based(PCE)superplasticizers,is developed and studied by Langevin molecular dynamics simulations with implicit solvent and explicit counterions.The agreement on the radius of gyration of the PCEs with experiments shows that our model can be useful in studying the equilibrium sizes of PCEs in solution.The effects of ionic strength,side-chain number,and side-chain length on the conformational behavior of PCEs in solution are explored.Single-chain equilibrium properties,including the radius of gyration,end-to-end distance and persistenee length of the polymer backbone,shape-asphericity parameter,and the mean span dimension,are determined.It is found that with the increase of ionic strength,the equilibrium sizes of the polymers decrease only slightly,and a linear dependenew of the persistence length of backbone on the Debye screening length is found,in good agreement with the theory developed by Dobrynin.Increasing side-chain numbers and/or side-chain lengths increases not only the equilibrium sizes(radius of gyration and mean span)of the polymer as a whole,but also the persistence length of the backbone due to excluded volume interactions.  相似文献   

8.
Suppressing the trap-state density and the energy loss via ternary strategy was demonstrated.Favorable vertical phase distribution with donors(acceptors)accumulated(depleted)at the interface of active layer and charge extraction layer can be obtained by introducing appropriate amount of polymer acceptor N2200 into the systems of PBDB-T:IT-M and PBDB-TF:Y6.In addition,N2200 is gradiently distributed in the vertical direction in the ternary blend film.Various measurements were carried out to study the effects of N2200 on the binary systems.It was found that the optimized morphology especially in vertical direction can significantly decrease the trap state density of the binary blend films,which is beneficial for the charge transport and collection.All these features enable an obvious decrease in charge recombination in both PBDB-T:IT-M and PBDB-TF:Y6 based organic solar cells(OSCs),and power conversion efficiencies(PCEs)of 12.5%and 16.42%were obtained for the ternary OSCs,respectively.This work indicates that it is an effective method to suppress the trap state density and thus improve the device performance through ternary strategy.  相似文献   

9.
Laser-structuring is an effective method to promote ion diffusion and improve the performance of lithium-ion battery(LIB)electrodes.In this work,the effects of laser structuring parameters(groove pitch and depth)on the fundamental characteristics of LIB electrode,such as interfacial area,internal resistances,material loss and electrochemical performance,are investigated,LiNi0.5Co0.2Mn0.3O2 cathodes were structured by a femtosecond laser by varying groove depth and pitch,which resulted in a material loss of 5%-14%and an increase of 140%-260%in the in terfacial area between electrode surface and electrolyte.It is shown that the importance of groove depth and pitch on the electrochemical performance(specific capacity and areal discharge capacity)of laser-structured electrode varies with current rates.Groove pitch is more im porta nt at low current rate but groove depth is at high curre nt rate.From the mapping of lithium concentration within the electrodes of varying groove depth and pitch by laser-induced breakdown spectroscopy,it is verified that the groove functions as a diffusion path for lithium ions.The ionic,electronic,and charge transfer resistances measured with symmetric and half cells showed that these internal resistances are differently affected by laser structuring parameters and the changes in porosity,ionic diffusion and electronic pathways.It is demonstrated that the laser structuring parameters for maximum electrode performance and minimum capacity loss should be determined in consideration of the main operating conditions of LIBs.  相似文献   

10.
In order to balance electrochemical kinetics with loading level for achieving efficient energy storage with high areal capacity and good rate capability simultaneously for wearable electronics,herein,2 D meshlike vertical structures(NiCo_2 S_4@Ni(OH)_2) with a high mass loading of 2.17 mg cm-2 and combined merits of both 1 D nanowires and 2 D nanosheets are designed for fabricating flexible hybrid supercapacitors.Particularly,the seamlessly interconnected NiCo_2 S_4 core not only provides high capacity of 287.5 μAh cm-2 but also functions as conductive skeleton for fast electron transport;Ni(OH)_2 sheath occupying the voids in NiCo_2 S_4 meshes contributes extra capacity of 248.4 μAh cm-2;the holey features guarantee rapid ion diffusion along and across NiCO_2 S_4@Ni(OH)_2 meshes.The resultant flexible electrode exhibits a high areal capacity of 535.9 μAh cm-2(246.9 mAh g-1) at 3 mA cm-2 and outstanding rate performance with 84.7% retention at 30 mA cm-2,suggesting efficient utilization of both NiCo_2 S_4 and Ni(OH)_2 with specific capacities approaching to their theoretical values.The flexible solid-state hybrid device based on NiCo_2 S_4@Ni(OH)_2 cathode and Fe_2 O_3 anode delivers a high energy density of 315 μWh cm-2 at the power density of 2.14 mW cm-2 with excellent electrochemical cycling stability.  相似文献   

11.
The effect of electron irradiation on poly(vinylidene fluoride‐trifluoroethylene) (56/44 mol %) copolymers was studied with dielectric constant measurements, differential scanning calorimetry (DSC), X‐ray diffraction, thermally stimulated depolarization current (TSDC) spectroscopy, and polarization hysteresis loops. The dielectric relaxation peaks, obeying the Vogel–Fulcher law, indicated that the copolymers were transformed from a normal ferroelectric to a relaxor ferroelectric. The X‐ray and DSC results showed that both the crystalline and polar ordering decreased after irradiation, indicating a partial recovery from trans–gauche bonds to local trans bonds (polar ordering). Moreover, the peak temperature decreased with the irradiation dose in the TSDC spectra; this demonstrated fewer dipoles and crystalline regions in the irradiated copolymer films during the ferroelectric–paraelectric transition and was consistent with polarization hysteresis loop measurements. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1099–1105, 2004  相似文献   

12.
分别通过可逆加成-断裂链转移(RAFT)聚合和原子转移自由基聚合(ATRP)结合叠氮-端炔基大分子点击反应,制备了一系列不同聚合度和不同嵌段比例的基于侧链苯并菲TP盘状液晶基元和偶氮苯Azo棒状液晶基元的盘棒杂化二嵌段共聚物。采用核磁共振氢谱(1H NMR)、凝胶渗透色谱(GPC)、差示扫描量热分析(DSC)和正交偏光分析(POM)对盘棒杂化二嵌段共聚物的组成结构、相对分子质量和液晶相行为进行了表征。偶氮苯嵌段较短的共聚物P(TP640-b-P(Azo)10,主要表现出占优势嵌段TP盘状液晶聚合物的热转变温度与相行为。而偶氮苯嵌段较长的共聚物P(TP610-b-P(Azo)40和P(TP640-b-P(Azo)40则更多体现出类似Azo棒状侧链液晶聚合物的相行为和光响应特性。小角/广角X射线散射(SAXS/WAXS)分析证实了Azo嵌段较长的嵌段共聚物薄膜尤其经退火处理后呈现层状结构,倾向于平行基底取向排布的苯并菲诱导偶氮苯平躺沿着平行基底方向排列而显著减少了光吸收,经紫外及可见光的辐照后光吸收显著增大,其中盘状嵌段较长的P(TP640-b-P(Azo)40对比响应增幅尤其明显。这种盘棒杂化二嵌段共聚物薄膜所表现出的特殊光物理性质及其快速光响应-回复特性,加深了对其相互作用的理解,可望为设计合成新的光响应材料提供参考依据。  相似文献   

13.
Side-chain copolymers, poly(mOBA-co-mStilb)s, composed of proton acceptors (stilbazoles) and proton donors (benzoic acids) connected to polyacrylate backbone with different methylene spacer lengths (m = 6 and 10) were prepared in different donor/acceptor molar ratios. The H-bonded copolymeric networks were formed once they were synthesized, and showed more homogenous phase than the physical-blended supramolecular networks consisting of donor and acceptor homopolymers, i.e.H-bonded blends of PmOBA and PmStilb. In order to compare the effects of the backbone connection of these H-bonded copolymers and blends, we also built monomer-monomer and polymer-monomer H-bonded complexes of similar structures (shown in Fig. 1). DSC, POM, and powder XRD studies reveal that the copolymers (m = 10)with mole fractions of benzoic acids between 0.33-0.83 show the smectic A (SMA) phase with layer spacing values between 42.22A-50.47A (increases with higher H-bonded crosslinking density between benzoic acids and stilbazoles), while for m = 6, liquid crystalline behavior still can be observed at 0.89 molar fraction of benzoic acids. However, on the basis of powder XRD study it is found that the d spacing values of H-bonded copolymers with m = 6 in the SmA phase increase with higher molar ratios of benzoic acids, which is agreed with the formation of microphase separation due to the hydrogen bonds of benzoic acids connected themselves from the same backbone. The isotropization temperatures of the H-bonded copolymers and blends increase as the molar ratios of benzoic acids increase, while the higher crosslinking density of the H-bonded copolymeric networks and blends can stabilize the liquid crystalline phase.  相似文献   

14.
The crystallization behavior of poly(e-caprolactone)/poly(ethylene glycol) (PCL/PEG) blend was investigated by differential scanning calorimetry (DSC) and polarized microscopy (POM). Individual phase transition peaks in the DSC curves for both PEG and PCL in all the polymer blends with different PCL contents were observed. The crystallization and melting peak temperatures of PEG were at 41 and 65°C, respectively; while the crystallization and melting temperatures of PCL located at 28 and 56°C, respectively. In-situ POM results demonstrated that spherulites crystalline morphology was formed for both PCL and PEG homopolymers. In PEG/PCL blend, however, both the phase separation morphology and spherulitic morphology can be observed. In blends with 30 or 50 wt % PCL, the PCL component formed dispersed phase and crystallized at lower temperature. However, in blends with 70% PCL, the phase inversion behavior occurred. The continuous PCL phase crystallized at 35°C, while the PEG dispersed phase crystallized at a lower temperature. Fractional crystallization behavior of PEG and PCL was controlled by temperature. The spherulites growth rate of PEG was greatly influenced by temperature, instead of the content of PCL component in the PCL/PEG blends.  相似文献   

15.
Blends of isotactic propylene-ran-ethylene (EP) and propylene-ran-(1-butene) (BP) copolymers with various comonomer content (2-3.1 wt.% ethylene, 9.9 wt.% 1-butene), were prepared in Brabender internal mixer at various compositions (25/75, 50/50, 75/25). Static, impact and dynamic mechanical behavior of copolymers and their blends was investigated. The crystalline structure was studied by DSC and SAXS analysis. For all copolymers the lamellar thickness, crystallinity degree and glass transition temperature are lower than those of iPP homopolymer, depending on the comonomer content. It was found that the copolymers exhibit improved impact strength as compared to plain iPP, due to lower crystallinity and higher mobility of chains within amorphous component. Moreover, the elastic modulus as well as the yield behavior of the examined samples resulted to depend primarily on the amount of the crystalline phase and the thickness of the lamellar crystals, respectively. A linear dependence of yield stress on the logarithm of reciprocal lamellar thickness was observed for blends and copolymers, supporting the concept of thermal nucleation of dislocations which control the crystallographic slip processes initiated at the yield point. The blends of BPS with either EPS or EP2 display complete miscibility in the entire range of composition and their mechanical properties are intermediate between those of plain components, changing gradually with the composition.  相似文献   

16.
通过苯乙烯(S)及甲基丙烯酸正丁酯(nBma)分别与少量的甲基丙烯酸(Maa)和马来酸酐(Man)共聚,从而在聚苯乙烯(PS)及聚甲基丙烯酸丁酯(PBma)链上分别引入了功能基因羧酸基和酸酐基,制得共聚物SMaa、BmaMaa、sMan及BmaMan.通过将这些共聚物分别交换上金属离子制备得相应的离聚物(Ionomer)及其共混物.红外光谱(IR)、差示扫描量热法(DSC)及透射电镜(TEM)的研究结果表明,共混物两组分均具有同种(负)电荷时,仍表现明显的增容作用.  相似文献   

17.
 通过苯乙烯(S)及甲基丙烯酸正丁酯(nBma)分别与少量的甲基丙烯酸(Maa)和马来酸酐(Man)共聚,从而在聚苯乙烯(PS)及聚甲基丙烯酸丁酯(PBma)链上分别引入了功能基因羧酸基和酸酐基,制得共聚物SMaa、BmaMaa、sMan及BmaMan.通过将这些共聚物分别交换上金属离子制备得相应的离聚物(Ionomer)及其共混物.红外光谱(IR)、差示扫描量热法(DSC)及透射电镜(TEM)的研究结果表明,共混物两组分均具有同种(负)电荷时,仍表现明显的增容作用.  相似文献   

18.
本文通过研究含氯侧基液晶聚芳醚酮/含甲基苯侧基聚芳醚酮共混体系(结晶/非晶)环带球晶的形态演变和发展过程; 利用选择性溶剂刻蚀方法确定共混体系环带球晶的相组成和相结构, 探讨了环带球晶的形成机理.  相似文献   

19.
Segmented polyesteramides have been synthesized from N,N'-bis(p-carbomethoxybenzoy)butanediamine(T4T)as crystalline segments and mixture of poly(tetramethylene oxide)with the average molecular weight 1000(PTMO1000)and 1,5-pentanediol(PDO)as soft segments. The polymerization was carried out in the melt at 250℃ for 1-2 h while vacuum was applied. The chemical composition of the copolymer was measured by H1-NMR. The melting behavior of the copolymers was studied by the differential scanning calorimeter. The dynamic mechanical properties were investigated on injection moulded bars by means of dynamic mechanical analysis. It was found that the copolymers with more than 40% molar ratio PDO showed two glass transition temperatures and two melting temperatures. The glass transition temperatures are independent of composition,and thus two fully phaseseparated amorphous phases are present. The melting temperatures change with PDO content. The amount of PDO has an effect on both TmA and TmB . TmA is attributed to the lamella consisting of extended T4T segments,while TmB results from the much thicker lamella consisting of both extended T4T and PDO segments. It is also possible that some PDO is present in the interphase as adjacent re-entry groups. So the resultant copolymer shows that a complex system,two crystalline phases,two amorphous phases and an interphase are involved in the copolymer. The undercooling for these copolymers is small,which means that these segmented copolymers crystallize fast.  相似文献   

20.
We describe the successful mixing of polymer pairs and triplets that are normally incompatible to form blends that possess molecular‐level homogeneity. This is achieved by the simultaneous formation of crystalline inclusion compounds (ICs) between host cyclodextrins (CDs) and two or more guest polymers, followed by coalescing the included guest polymers from their common CD–ICs to form blends. Several such CD–IC fabricated blends, including both polymer1/polymer2 binary and polymer1/ polymer2/polymer3 ternary blends, are described and examined by means of X‐ray diffraction, differential scanning calorimetry, thermogravimetric analysis, Fourier transform infrared spectroscopy, and solid‐state NMR to probe their levels of mixing. It is generally observed that homogeneous blends with a molecular‐level mixing of blend components is achieved, even when the blend components are normally immiscible by the usual solution and melt blending techniques. In addition, when block copolymers composed of inherently immiscible blocks are coalesced from their CD–ICs, significant suppression of their normal phase‐segregated morphologies generally occurs. Preliminary observations of the thermal and temporal stabilities of the CD–IC coalesced blends and block copolymers are reported, and CD–IC fabrication of polymer blends and reorganization of block copolymers are suggested as a potentially novel means to achieve a significant expansion of the range of useful polymer materials. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4207–4224, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号