首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multifunctional sensor systems are becoming increasingly important in electroanalytical chemistry. Together with ongoing miniaturization there is a need for micro- and nanopatterning tools for thin electroactive layers (e.g. self-assembling monolayers). This paper documents a method for production of a micro-array of different metal-porphyrin monolayers with different sensor properties. A new method has been developed for the selective and local metallization of bare porphyrin monolayers by cathodic pulsing and sweeping. The metal-porphyrin monolayers obtained were characterized by cyclic voltammetry. It was shown that porphyrin monolayers can be metallized with manganese, iron, cobalt, and nickel by use of the new method. It is expected that all types of metal-porphyrin monolayers can be produced in the same manner.  相似文献   

2.
[structure: see text] Based on the high affinity of phenanthroline-strapped porphyrins for imidazoles, building blocks for self-assembled, linear porphyrin architectures have been designed. Their synthesis is reported, and the assembly principle is illustrated by the formation of the shortest possible scaffold. Only one type of assembly is observed, and the stepwise energy transfer from the boron dipyrrylmethane (BODIPY) input to the free base output is highly efficient.  相似文献   

3.
The incorporation of designed self-assembled supramolecular structures into devices requires deposition onto surfaces with retention of both structure and function. This remains a challenge and can present a significant barrier to developing devices using self-organizing materials. To examine the role of peripheral groups in the self-organization of self-assembled multiporphyrinic arrays on surfaces, Pd(II)-linked square and Pt(II)-linked trapezoidal tetrameric porphyrin arrays with peripheral tert-butylphenyl or dodecyloxyphenyl functionalities were investigated using various spectroscopies and atomic force microscopy. The Pd(II) assembled squares disassemble upon deposition on glass surfaces, while the Pt(II) assembled trapezoids are more robust and can be routinely cast on these surfaces. The orientation and length of the peripheral alkyl substituents influence the resultant structures on surfaces. The tert-butylphenyl-substituted porphyrin array forms discrete columnar stacks, which assemble in a vertical direction via pi-stacking interactions among the macrocycles. The tetrameric porphyrin array with dodecyloxyphenyl groups forms a continuous film via van der Waals interactions among the peripheral hydrocarbon chains. The super-molecules with liquid crystal-forming moieties also form three-dimensional crystalline structures at higher deposition concentrations. These observations clearly demonstrate that the number, position, and nature of the peripheral groups and the supramolecular structure and dynamics, as well as the energetics of interactions with the surface, are of key importance to the two-dimensional and three-dimensional self-organization of assemblies such as porphyrin arrays on surfaces.  相似文献   

4.
Toward the development of new strategies for the synthesis of multiporphyrin arrays, we have prepared and characterized (electrochemistry and static/time-resolved optical spectroscopy) a series of dyads composed of a zinc porphyrin and a free base porphyrin joined via imine-based linkers. One dyad contains two zinc porphyrins. Imine formation occurs under gentle conditions without alteration of the porphyrin metalation state. Five imine linkers were investigated by combination of formyl, benzaldehyde, and salicylaldehyde groups with aniline and benzoic hydrazide groups. The imine-linked dyads are quite stable to routine handling. The excited-state energy-transfer rate from zinc to free base porphyrin ranges from (70 ps)(-)(1) to (13 ps)(-)(1) in toluene at room temperature depending on the linker employed. The energy-transfer yield is generally very high (>97%), with low yields of deleterious hole/electron transfer. Collectively, this work provides the foundation for the design of multiporphyrin arrays that self-assemble via stable imine linkages, have predictable electronic properties, and have comparable or even enhanced energy-transfer characteristics relative to those of other types of covalently linked systems.  相似文献   

5.
The electrical properties of supermolecular assemblies of oligo(p-phenylene vinylene) were studied. These materials self-assemble into well-defined cylindrical structures in solution with lengths in the range of 100 nm-10 microm and diameters between 5 and 200 nm. Atomic force microscopy showed that by adjusting the concentration, either individual molecular wires or a dense film could be deposited. The molecular wires showed poor electrical conduction. Several tests were performed that show that it was the molecular wires themselves, not the contacts, that limit the conductivity.  相似文献   

6.
A series of thioacetate-terminated butadiyne-linked porphyrin oligomers have been synthesized with one to three porphyrin repeat units. Single molecule electrical scanning tunneling microscopy measurements using the I(s) and I(t) methods were used to determine the molecule conductances for this series of oligomers. The molecular conductance shows an exponential falloff with sulfur-sulfur distance with a remarkably low attenuation factor of beta = (0.04 +/- 0.006) A-1.  相似文献   

7.
A self-assembled trimeric ring-shaped aggregate of an aluminium(III) porphyrin bearing a benzoic acid in one meso-position has been characterized by NMR-spectroscopy and MALDI-TOF spectrometry.  相似文献   

8.
A self-assembly technique assisted with surfactant is developed to fabricate one-dimensional (1D) nanostructure of zinc meso-tetra (4-pyridyl) porphyrin. The so-prepared nanostructure appears in a shape of hollow hexagonal nanoprism with uniform size. The length and aspect ratio of the nanoprisms is easily tunable by controlling the stoichiometric ratio of porphyrin over surfactant. The internal structure of the nanoprisms is well described by XRD. Furthermore, as a result of dispersivity and regular geometric shape, these nanoprisms can readily self-organize into an ordered, smectic three-dimensional (3D) architecture through simple evaporation of the solvent. The results should be significant in porphyrin crystallization and porphyrin application in optoelectronic device, catalysis, drug delivery, and molecular filtration.  相似文献   

9.
The photosynthetic apparatus of green sulfur bacteria, the chlorosome, is generally considered as a highly efficient natural light-harvesting system. The efficient exciton transport through chlorosomes toward the reaction centers originates from self-assembly of the bacteriochlorophyll molecules. The aim of the present work is to realize a long exciton diffusion length in an artificial light-harvesting system using the concept of self-assembled natural chlorosomal chromophores. The ability to transport excitons is studied for porphyrin derivatives with different tendencies to form molecular stacks by self-assembly. A porphyrin derivative denoted as ZnOP, containing methoxymethyl substituents ({meso-tetrakis[3,5-bis(methoxymethyl)phenyl]porphyrinato}zinc(II)) is found to form self-assembled stacks, in contrast to a derivative with tert-butyl substituents, ZnBuP ({meso-tetrakis[3,5-bis(tert-butyl)phenyl]porphyrinato}zinc(II)). Exciton transport and dissociation in a bilayer of these porphyrin derivatives and TiO2 are studied using the time-resolved microwave conductivity (TRMC) method. For ZnOP layers it is found that excitons undergo diffusive motion between the self-assembled stacks, with the exciton diffusion length being as long as 15 +/- 1 nm, which is comparable to that in natural chlorosomes. For ZnBuP a considerably shorter exciton diffusion length of 3 +/- 1 nm is found. Combining these exciton diffusion lengths with exciton lifetimes of 160 ps for ZnOP and 74 ps for ZnBuP yields exciton diffusion coefficients equal to 1.4 x 10(-6) m2/s and 1 x 10(-7) m2/s, respectively. The larger exciton diffusion coefficient for ZnOP originates from a strong excitonic coupling for interstack energy transfer. The findings show that energy transfer is strongly affected by the molecular organization. The efficient interstack energy transfer shows promising prospects for application of such self-assembled porphyrins in optoelectronics.  相似文献   

10.
The structure of a cyclic self-assembled tetramer of an asymmetric meso-ethynylpyridyl-functionalized Zn(II)-porphyrin was established by solution-phase X-ray scattering and diffraction; femtosecond transient absorption and anisotropy spectroscopies were used to (a) observe rapid energy transfer (3.8 ps(-1)) between porphyrin subunits and (b) establish that the transfer occurs between adjacent units.  相似文献   

11.
Third-order nonlinear optical properties of two series of self-assembled porphyrin wires, one being terminated by zinc porphyrin and the other by free base porphyrin, were measured by femtosecond time-resolved optical Kerr effect. The hyperpolarizability values of the latter series were extremely large ranging from 10-30 to 10-29 esu, 10 times larger than the former. The behavior is accounted for by the contribution of terminal free base porphyrin to enhance the molecular polarization by acceptor nature toward central metalloporphyrin array.  相似文献   

12.
Metal-free porphyrin-dendrimers provide a convenient platform for the construction of membrane-impermeable ratiometric probes for pH measurements in compartmentalized biological systems. In all previously reported molecules, electrostatic stabilization (shielding) of the core porphyrin by peripheral negative charges (carboxylates) was required to shift the intrinsically low porphyrin protonation pK(a)'s into the physiological pH range (pH 6-8). However, binding of metal cations (e.g., K(+), Na(+), Ca(2+), Mg(2+)) by the carboxylate groups on the dendrimer could affect the protonation behavior of such probes in biological environments. Here we present a dendritic pH nanoprobe based on a highly non-planar tetraaryltetracyclohexenoporphyrin (Ar(4)TCHP), whose intrinsic protonation pK(a)'s are significantly higher than those of regular tetraarylporphyrins, thereby eliminating the need for electrostatic core shielding. The porphyrin was modified with eight Newkome-type dendrons and PEGylated at the periphery, rendering a neutral water-soluble probe (TCHpH), suitable for measurements in the physiological pH range. The protonation of TCHpH could be followed by absorption (e.g., ε(Soret)(dication)~270,000 M(-1) cm(-1)) or by fluorescence. Unlike most tetraarylporphyrins, TCHpH is protonated in two distinct steps (pK(a)'s 7.8 and 6.0). In the region between the pK(a)'s, an intermediate species with a well-defined spectroscopic signature, presumably a TCHpH monocation, could be observed in the mixture. The performance of TCHpH was evaluated by pH gradient measurements in large unilamellar vesicles. The probe was retained inside the vesicles and did not pass through and/or interact with vesicle membranes, proving useful for quantification of proton transport across phospholipid bilayers. To interpret the protonation behavior of TCHpH we developed a model relating structural changes on the porphyrin macrocycle upon protonation to its basicity. The model was validated by density functional theory (DFT) calculations performed on a planar and non-planar porphyrin, making it possible to rationalize higher protonation pK(a)'s of non-planar porphyrins as well as the easier observation of their monocations.  相似文献   

13.
We report a bottom-up approach for the fabrication of metallo-porphyrin compounds and nanoarchitectures in two dimensions. Scanning tunneling microscopy and tunneling spectroscopy observations elucidate the interaction of highly regular porphyrin layers self-assembled on a Ag(111) surface with iron monomers supplied by an atomic beam. The Fe is shown to be incorporated selectively in the porphyrin macrocycle whereby the template structure is strictly preserved. The immobilization of the molecular reactants allows the identification of single metalation events in a novel reaction scheme. Because the template layers provide extended arrays of reaction sites, superlattices of coordinatively unsaturated and magnetically active metal centers are obtained. This approach offers novel pathways to realize metallo-porphyrin compounds, low-dimensional metal-organic architectures and patterned surfaces which cannot be achieved by conventional means.  相似文献   

14.
Electrical conduction through linear porphyrin arrays   总被引:1,自引:0,他引:1  
Electrical conduction measurements were made on two extreme types of directly linked porphyrin arrays by using nanoelectrodes. One type is the directly linked Zn(II)porphyrin arrays, consisting of 48 Zn(II)porphyrin moieties (Z48), and the other type is the completely flat, tape-shaped Zn(II)porphyrin arrays, consisting of eight Zn(II)porphyrin units (T8). The I-V curve for Z48 exhibits the diode-like behavior and the hysteresis depending on the voltage sweep direction presumably due to the conformational heterogeneity arising from the dihedral angle distribution in Z48. On the other hand, the I-V curve for T8 is nearly symmetric without any hysteresis, leading to the higher conductivity and the smaller band gap. These results illustrate that the stronger pi-electron conjugation in T8, as compared with that of Z48, results in better electrical conduction.  相似文献   

15.
Addition of 4,4'-bipyridyl to a solution of a meso-meso butadiyne-linked conjugated zinc porphyrin polymer in chloroform results in self-assembly of a double-strand ladder complex. Excess ligand causes this duplex to dissociate into single strands. These binding processes were elucidated by near-IR and NMR titrations, as well as by gel permeation chromatography and small-angle neutron scattering. Ladder-making and -breaking are highly cooperative, with Hill coefficients of 3.0 and 3.7, respectively. Self-assembly of the ladder holds the pi-system in a planar conformation, enhancing the conjugation, resulting in a red-shift and intensification of the Q-band. Both the real and imaginary parts of the third-order susceptibility per macrocycle are amplified by ladder formation, as revealed by degenerate four-wave mixing measurements at 1064 nm. At this wavelength, the double-strand polymer complex has |chi(3)xyyx| = 6.0 x 10-17 m2 V-2 per macrocycle, compared with 6.6 x 10-18 m2 V-2 for the single-strand polymer under the same conditions.  相似文献   

16.
Alkyl-chain-assisted self-assembled monolayers of pyridine-coordinated porphyrin rhodium chlorides were observed at the solid-liquid interface by scanning tunneling microscopy (STM). The resolved images at a molecular level were obtainable in the pure solution of pyridine-coordinated porphyrin rhodium chloride with four triacontyl groups [Rh(C300PP)(Cl)(Py)]. In the case of pyridine-coordinated porphyrin rhodium chloride with four octadecyl groups [Rh(C18OPP)(Cl)(Py)], the STM images were not obtainable in the pure solution of Rh(C18OPP)(Cl)(Py) but obtainable in the mixture containing Rh(C18OPP)(Cl)(Py) and free porphyrin C18OPP. On the basis of the mixed self-assembled monolayer analysis, the apparent difference in the adsorption free energy between Rh(CnOPP)(Cl)(Py) and CnOPP (deltaGapp) was calculated. The calculated deltaGapp values for C18OPP and C30OPP mixed systems were quite different. The disadvantage of the adsorption free energy of Rh(C18OPP)(Cl)(Py) makes it difficult to obtain molecularly resolved images of Rh(C18OPP)(Cl)(Py), and the large adsorption energy due to the long alkyl chains enabled us to obtain molecularly resolved images of Rh(C30OPP)(Cl)(Py).  相似文献   

17.
Porphyrins appended with four rigid hydrogen bonding motifs on the meso positions were synthesized and self-assembled into a cofacial cage with four complementary bis(decyl)melamine units in dry solvents. The hydrocarbon chains on the melamine mediate the formation of nanofilms on surfaces as the solvent slowly evaporates.  相似文献   

18.
19.
S. Punidha 《Tetrahedron》2008,64(34):8016-8028
Covalently linked diarylethyne bridged unsymmetrical porphyrin triad containing ZnN4, N4, and N2S2 porphyrin sub-units and porphyrin tetrad containing ZnN4, N4, N3S, and N2S2 porphyrin sub-units were synthesized over sequence of Pd(0) mediated coupling reactions. The triad and tetrad are freely soluble in all common organic solvents and characterized by ES-MS, NMR, absorption, fluorescence, and electrochemical techniques. The 1H NMR, absorption, and electrochemical studies indicated a weak interaction between the porphyrin sub-units of porphyrin triad and porphyrin tetrad. The steady state and time-resolved fluorescence studies supported an energy transfer from one end of porphyrin array to the other end. This kind of porphyrin arrays containing different porphyrin sub-units will be useful for molecular electronics applications.  相似文献   

20.
Varying the solution growth conditions of cooperative binary ionic solids composed of anionic and cationic metalloporphyrins produces a series of families of self-assembled structures that efficiently and durably photosensitize the evolution of hydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号