首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mossbauer spectroscopy (MBS) and X-ray diffraction (XRD) have been used to establish the composition of the rust layer formed on weathering steel and pure iron under several wet-dry cycles in a SO2-polluted atmosphere. FeSO3−3H2O, FeSO4−4H2O, and poorly crystalline ferrihydrite were identified as the only corrosion products. The Mossbauer spectrum of FeSO3−3H2O is reported.  相似文献   

2.
Four samples of steels with alloying elements were exposed to an industrial environment during 1,955 days, aiming to elucidate the effect of the alloying elements Cu and Ni on the resistance of weathering steels to corrosion processes. The samples were characterized with optical microscopy, scanning electron microscopy (SEM), powder X-ray diffraction (XRD), saturation magnetization measurements and with energy dispersive (EDS), infrared, Mössbauer and Raman spectroscopies. All the steels originated orange and dark corrosion layers; their thicknesses were determined from the SEM images. EDS data of such rust layers showed that the alloying element content decreases from the steel core towards the outer part of the rust layer. Moreover, in the dark rust layer some light-gray regions were identified in the W and Cu-alloy steel, where relatively higher Cr and Cu contents were found. XRD patterns, infrared, Raman and Mössbauer spectra (298, 110 and 4 K) indicated that the corrosion products are qualitatively the same, containing lepidocrocite (γFeOOH; hereinafter, it may be referred to as simply L), goethite (αFeOOH; G), feroxyhite (δ′FeOOH; F), hematite (αFe2O3; H) and magnetite (Fe3O4; M) in all samples; this composition does not depend upon the steel type, but their relative concentrations is related to the alloying element. Mössbauer data reveal the presence of (super)paramagnetic iron oxides in the corrosion products. Saturation magnetization measurements suggest that feroxyhite may be an occurring ferrimagnetic phase in the rust layer.  相似文献   

3.
Weathering steel, and particularly CorTen steel, is a very used material for modern artworks exhibited outdoors. One of the characteristic that makes this material so attractive to artists is the property to develop a protective rust layer composed by iron oxides which preserves its metallic core from atmospheric corrosion. This study was conducted to evaluate the conservation state of four CorTen sculptures by Eduardo Chillida, located in different places of Bilbao city (north of Spain) and affected by different factors (environmental among others) by using Raman spectroscopy. Measurements were performed in situ with a handheld Raman spectrometer mounted on a tripod with x–y–z axes motorization at the micron level. The most common oxyhydroxides detected were lepidocrocite (γ‐FeO(OH)), goethite (α‐FeO(OH)), hematite ( ‐Fe2O3) and magnetite (Fe3O4), being goethite the most stable phase. All the iron oxyhydroxides were identified in all of the studied sculptures but their relative amounts were different for each sculpture. The consequences of the marine aerosols exposure in the steel surface were also studied, detecting limonite (FeO(OH)·nH2O) and akaganeite (β‐FeO(OH)). The results confirmed that the evolution of the rust layer present on the analyzed weathering steels is different, depending both on the exposure and the particular type of the steel. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
The phases and compositions of the corrosion products of a mild steel (A-36) and two weathering steels (A-588 and COR 420) formed after 3 months exposure to the tropical marine atmosphere of Panama were examined using FTIR and Mössbauer spectroscopy. The results show that amorphous or crystallized iron oxyhydroxides goethite α-FeOOH and lepidocrocite γ-FeOOH are early corrosion products. Maghemite γ-Fe2O3 and magnetite Fe3O4 have also been identified and found to be prominent components for steels exposed to the most aggressive conditions. The formation of akaganeite β-FeOOH was observed when chlorides were occluded within the rust. FTIR showed the presence of hematite α-Fe2O3 in one sample.  相似文献   

5.
Some of the advantages and limitations of Mössbauer spectroscopy when used in corrosion research are shown by using three examples taken from the work of the authors on (i) the passive layer of iron, (ii) the corrosion of weathering steels by SO2-polluted atmospheres and (iii) the performance of rust converters.  相似文献   

6.
The corrosion reaction of four Fe–Mn–Al alloys exposed to a cycling, dry–humid, SO2 (0.001% by volume) polluted atmosphere was studied. ICEMS, XPS, AES-SAM and transmission Mössbauer spectroscopy at different temperatures were employed to characterize the corrosion products. The analytical results indicate that (i) ferrihydrite is the main component of the rust; (ii) there is an abundant presence of Mn2+ and SO3 2–/SO4 2– on the top of the corrosion layer, the concentration of SO4 2– increasing with the number of cycles; and (iii) the magnetic hyperfine pattern exhibited by the series of low-temperature spectra of the rust is quite different from that observed in the rust formed under similar corrosive environments on iron and weathering steel. This latter finding is correlated with a slow rate of transformation of the Fe3+ species formed at the early stages of corrosion into -FeOOH, the usual final product of this type of corrosion processes. The sulphate anions, abundant inside the electrolyte during the wet periods, could be incorporated to the ferrihydrite structure being responsible for the Mössbauer spectral pattern recorded from the corrosion products at low temperatures.  相似文献   

7.
The effect of a dry-hot period on the SO2 corrosion of weatherig steel and pure iron under wet-dry cycling was investigated. Corrosion products were identified by Mössbauer spectroscopy and X-ray powder diffraction. The formation of an intermediate corrosion layer of spm α-FeOOH only on weathering steel was the most significant result.  相似文献   

8.
For fundamental studies of the atmospheric corrosion of steel, it is useful to identify the iron oxide phases present in rust layers. The nine iron oxide phases, iron hydroxide (Fe(OH)2), iron trihydroxide (Fe(OH)3), goethite (α-FeOOH), akaganeite (β-FeOOH), lepidocrocite (γ-FeOOH), feroxyhite (δ-FeOOH), hematite (α-Fe2O3), maghemite (γ-Fe2O3) and magnetite (Fe3O4) are among those which have been reported to be present in the corrosion coatings on steel. Each iron oxide phase is uniquely characterized by different hyperfine parameters from M?ssbauer analysis, at temperatures of 300K, 77K and 4K. Many of these oxide phases can also be identified by use of Raman spectroscopy. The relative fraction of each iron oxide can be accurately determined from the M?ssbauer subspectral area and recoil-free fraction of each phase. The different M?ssbauer geometries also provide some depth dependent phase identification for corrosion layers present on the steel substrate. Micro-Raman spectroscopy can be used to uniquely identify each iron oxide phase to a high spatial resolution of about 1 μm. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
A new methodology was envisioned in order to prepare green rust compounds build on organic anions that could intervene in microbiologically influenced corrosion processes of iron and steel. The formate ion was chosen as an example. The formation of rust was simulated by the oxidation of aqueous suspensions of Fe(OH)2 precipitated from Fe(II) lactate and sodium hydroxide, in the presence of sodium formate to promote the formation of the corresponding green rust. The evolution of the precipitate with time was followed by transmission Mössbauer spectroscopy at 15 K. It was observed that the initial hydroxide was transformed into a new GR compound. Its spectrum is composed of three quadrupole doublets, D 1 (δ?=?1.28 mm s?1, Δ?=?2.75 mm s?1) and D 2 (δ?=?1.28 mm s?1, Δ?=?2.48 mm s?1) that correspond to Fe(II) and D 3 (δ?=?0.49 mm s?1, Δ?=?0.37 mm s?1) that corresponds to Fe(III). The relative area of D 3, close to the proportion of Fe(III) in the GR, was found at 28.5?±?1.5% (~2/7). Raman spectroscopy confirmed that the intermediate compound was a Fe(II–III) hydroxy-formate, GR(HCOO?).  相似文献   

10.
A kinetic CEMS study of the early corrosion stages of iron and weathering steel in low (LAC) and very low (VLAC) SO2-polluted atmospheres has been carried out. The morphology and sulphur content of corrosion products were examined with SEM-EDAX.  相似文献   

11.
One year indoor atmospheric corrosion examinations have been carried out on two conventional weathering steels for a year, at two test sites, Tocumen and Sherman Breakwater in Panama. They are environmentally classified by ISO 9223 as S1P0 τ 4 and S3P0 τ 5, respectively. In this humid-tropical marine climate corrosion rates are rather high, especially at Sherman Breakwater test site, mainly due to the high deposition of chloride, among other environmental conditions. Our results indicate that indoor corrosion is highly determined by the time of wetness and chloride ions. A-588 weathering steel corroded at a generally lower rate than COR-420 weathering steel. Rust characterization was performed by XRD, FTIR, and Mössbauer spectroscopy. Lepidocrocite, goethite, maghemite and akaganeite were found as corrosion products. Akaganeite is only detected when high chlorides deposition rates are obtained, and no washing effect occurs. This phase, together with maghemite, is obtained when there is greater aggressiveness in the environment.  相似文献   

12.
Re-examination of Dronino iron meteorite and products of its weathering in the internal and external surface layers was carried out using Mössbauer spectroscopy with a high velocity resolution. New results showed the presence of α-Fe(Ni, Co), α 2-Fe(Ni, Co) and γ-Fe(Ni, Co) phases with variations in Ni concentration in Dronino metallic iron alloy. The surface weathering products were supposed as magnetite and/or maghemite, goethite with different particles size and probably ferrihydrite in the internal layer and goethite with different particles size and probably ferrihydrite in the external layer.  相似文献   

13.
Wearthering steels treated with and without zinc phosphate solution were exposed to atmosphere for 15 years and rust layers produced on the steels were analysed by scattering Mössbauer spectrometry (CEMS and XMS). γ-FeOOH, fine α-FeOOH, 5Fe2O3·9H2O, γ-Fe2O3 and Fe3O4 were identified to be present in the rust formed on the steel without phosphate coating. Large particles of γ-Fe2O3 and Fe3O4 formed on the uncoated steel exposed to atmosphere in a position facing north on vertical plane. The layer structure of rust was affected by the position. The thin rust layer formed on the phosphate + carylite resin coated steel was considered to consist of γ-FeOOH, fine α-FeOOH, and fine γ-Fe2O3.  相似文献   

14.
Yamashita  M.  Uchida  H. 《Hyperfine Interactions》2002,139(1-4):153-166
A rust layer, so called protective rust layer, on a weathering low-alloy steel has strong protective ability for atmospheric corrosion of the steel. We have recently found through a large number of spectroscopic studies including Mössbauer spectroscopy that the protective rust layer forms after long-term phase transformation. The phase and structure of the rust definitely control the protective ability of the rust layer. From this recent knowledge, some new technologies have been developed. One is the surface-treatment technique that provides a possibility for obtaining the protective rust layer in a relatively short period even in the severe environments such as in marine and chloride (de-icing salts) containing environments. Others are based on selection of effective alloying elements for steel materials. These are particularly important for application in areas where protective rust layer formation may be hindered or prevented. In this paper, we mention recent progress in research and development on rusting protection by rust for atmospheric corrosion of steels in Japan.  相似文献   

15.
The corrosion of a carbon steel was studied in different atmospheres at sites in the Republic of Panama. The weight loss (corrosion penetration) suffered by the carbon steel is related to time by a bilogarithmic law. Mössbauer spectroscopy indicated the rust was composed of non-stoichiometric magnetite (Fe3-xO4), maghemite (γ-Fe2O3), goethite (α-FeOOH) of intermediate particle size, lepidocrocite (γ-FeOOH) and superparamagnetic particles. Magnetite formation is related to the alternating dry--wet cycles. Goethite is related to corrosion penetration by a saturation type of behavior, following a Langmuir type of relationship. Goethite in rust protects steel against further atmospheric corrosion.  相似文献   

16.
Carbon, CS, and weathering steels, WS, were totally immersed in a NaCl containing solution. The influence of steel composition and the presence/absence of air flux into the solution on the physical properties of spinel and other iron phases were investigated. Large amounts of defective magnetite were formed only on CS, whereas little amounts of small grain-sized defective maghemite were detected only on WS. The chemical composition of the steels greatly affects the type of spinel phase being formed and their relative abundance. A non-aerated environment favored the formation of magnetite in CS. The protective ability of the rust was unfavored in the presence of large amounts of spinels.  相似文献   

17.
Green rust 2 is usually obtained by oxidizing an initial mixture of FeSO4 and NaOH solutions and a complete oxidation leads mainly towards γ oxyhydroxide known as lepidorocite. By adding some NiSO4 one can stop at the first stage and Mössbauer spectra reveral only ferric doublets. This implies that the initial formula 4Fe(OH)2, 2FeOOH, FeSO4 of green rust 2 must be replaced byxNi(OH)2, (6?x)FeOOH, NiSO4, wherex scans from 2 to 4. It also means that all initial ferrous ions become oxidized into the ferric state leaving the Ni2+ ions unchanged. Therefore the end product of oxidation is the nickel containing green rust 2 at the place of the usual lepidocrocite.  相似文献   

18.
The rust products formed on weathering and carbon steels exposed to dry–wet cyclical processes in different chloride-rich solutions are carefully examined by means of different techniques. Special emphasis is given to the methodology of analysis of the data using 300 K and 77 K Mössbauer spectrometry and X-ray diffraction. The rust that is loosely bound to the metal surface and that it is lost during the corrosion process, for both types of steel, was found to be composed of lepidocrocite, superparamagnetic goethite, hematite, and traces of akaganeite. On the other hand, the adherent rust, which is differentiated as scraped and hit according to the way it is obtained, from both steels was found to be composed of akaganeite, spinel phase, goethite exhibiting broad distribution of particle sizes and lepidocrocite. The relative abundances of rust components for both steels were very similar, suggesting similar corrosion processes. Mass loss measurements show that the corrosion rates increases with increasing the chloride concentration. The presence of large quantities of spinel phase and akaganeite are a consequence of a corrosion process under the influence of very high chloride concentrations. Our results are useful for assessing the behavior of weathering steels where the levels of chlorides are high or in contact with sea water.  相似文献   

19.
The segregation behaviour of silicon during oxidation of a high-silicon steel has been investigated by AES. The results show that silicon seems to have two states of oxidation: one leading to the formation of SiOx and iron oxides when the oxidation and the following heat treatments in vacuum are performed below 500°C and the other occurring at temperatures higher than 500°C, leading to the formation of SiO2 and segregation of this species toward the surface without oxidation of iron.  相似文献   

20.
Weathering steels (COR-TEN) were corroded by wet-dry cycles using a splay of various solutions in a laboratory. Corrosion products on weathering steel were characterized by X-ray diffractometry and Mössbauer spectrometry at room and low temperatures. Fine α-FeOOH, γ-FeOOH and γ-Fe 2 O 3 are fundamentally formed in various atmospheric conditions. β-FeOOH is additionally formed under the existence of chloride ions, but not formed when sulfate ions are coexisting. Spraying a NaF solution prevents the progress of corrosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号