首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nearly stoichiometric CeN film is synthesized on a Re(0001) substrate in an ultrahigh vacuum system involving highly active N atoms in the growth process, generated by thermal decomposition of NH3 by use of a hot tungsten filament. The electronic structure of the CeN film as prepared is equivalent to that of a single crystal observed by in situ Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). AES and XPS investigations show that CeN film is directly oxidized to CeO2 after exposure to O2 at room temperature. However, CeN changes into Ce2O3 after annealing in approximately 10(-6) mbar of O2 atmosphere at elevated temperature.  相似文献   

2.
The vaporization process of europium dibromide was studied using high-temperature mass spectrometry. It was ascertained that saturated vapor in temperature range of 1049–1261 K was represented mainly by EuBr2 molecules; the fraction of dimer molecules Eu2Br4 was less than 1%. Heat capacities of solid and liquid europium dibromide, as well as the melting enthalpy were measured by means of differential scanning calorimetry in temperature range 300–1100 K; using these data thermodynamic functions for EuBr2 in condensed state were calculated. For all experimental data, including the literature data, thermodynamic characteristics of the vaporization of europium dibromide were determined using a unified set of thermodynamic functions according to the methods of the second and third laws of thermodynamics. The value of Δs H o(298.15 K) = 354 ± 5 kJ/mol was recommended for the reaction of sublimation of EuBr2(cr.) = EuBr2.  相似文献   

3.
Development of thermodynamic property databases and thermodynamic modeling algorithms require thermodynamic functions of substances presented in a functional form. In this paper we consider substances in the gaseous state only. The most known methods for approximating dependences of the thermodynamic functions on temperature are overviewed. An algorithm is proposed to fit the heat capacity with polynomials splitting the temperature range into intervals where the interval number and boundaries are optimized with respect to a given maximum approximation error. This algorithm is used in the IVTANTHERMO project and the corresponding thermodynamic modeling code.  相似文献   

4.
The thermodynamic and kinetic parameters of the cerium(IV) complexes formed in the initial stage of oxidation of dicarboxylic acids (H2L), like pentanedioic, butanedioic, propanedioic, and ethanedioic acids, by cerium(IV) sulfate were studied by the spectrophotometric and pH-potentiometric methods with the aid of integral kinetic methods at an ionic strength I = 2 mol/L within the pH range of–0.3–1.6 in a sulfuric acid medium and at temperature of 293.15 K. The composition of these complexes, the form of organic ligand existence therein, the thermodynamic parameters of their formation, and the kinetic parameters of their intramolecular redox decomposition were determined. Linear correlations between the found thermodynamic and kinetic parameters of the examined complexes [CeOHL]+ were obtained. The rate equation of the redox process occurring in the systems Ce4+–H2L was established and the corresponding reaction model was considered.  相似文献   

5.
Potassium ferrate, K2FeO4(cr), has numerous promising environmental applications. An aqueous thermodynamic model applicable to high ionic strengths is essential for guiding its applications. In this study, a thermodynamic model is developed for the solubility of K2FeO4(cr) in aqueous alkali metal hydroxide solutions, from 283.15 to 333.15 K to high ionic strengths, up to saturation of KOH and NaOH, based on the Pitzer activity coefficient model for aqueous species. The solubility products for K2FeO4(cr) at infinite dilution in the temperature range from 283.15 to 333.15 K were obtained. Based on the thermodynamic solubility product of K2FeO4(cr) at 298.15 and its temperature dependence, in combination with thermodynamic properties for $ {\text{FeO}}_{4}^{2 - } $ FeO 4 2 ? and K+ from the literature, standard thermodynamic properties of K2FeO4(cr) at 298.15 K and 0.1 MPa (1 bar) are derived for the first time as follows: Δf G 0 = ?(896 ± 8) kJ·mol?1, Δf H 0 = ?(1026 ± 4) kJ·mol?1, and S 0 = (130 ± 17) J·mol?1·K?1. Using the above thermodynamic properties for K2FeO4(cr), the potential presence or preservation of K2FeO4(cr) in the Martian soils under the conditions relevant to Mars were quantitatively evaluated. Thermodynamic calculations pertaining to the Martian conditions indicate that the presence or preservation of K2FeO4(cr) as a strong oxidant in the Martian soils can be supported.  相似文献   

6.
The thermokinetics of the formation reactions of cerium(III) n-dodecylbenzene sulfonate and cerium(III) stearate are studied by using a microcalorimeter. On the basis of experimental and calculated results, three thermodynamics parameters (the activation enthalpies, the activation entropies, the activation free energies), the rate constant, three kinetic parameters (the activation energies, the pre-exponential constant and the reaction order) and the enthalpies of the reaction of preparing cerium(III) n-dodecylbenzene sulfonate in the temperature range of 20–35°C and cerium(III) stearate in the temperature range of44.6–62.8°C are obtained. The results showed that the title reactions easily took place in the studied temperature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Tellurite of the composition Li2CeTeO5 is synthesized by solid-phase method from cerium(IV) and tellurium(IV) oxides and lithium carbonate. The type of syngony, the unit cell parameters, and the compound’s X-ray and pycnometry densities are determined via X-ray diffraction analysis. The isobaric heat capacity of lithium–cerium tellurite is studied by means of dynamic calorimetry in the temperature range of 298.15–673 K; the results serve as the basis for deriving C p ° ~ f(T) dependency equations and determining the compound’s thermodynamic functions. λ-shaped anomalous effects, due probably to Type II phase transitions, are found on the C p ° ~ f(T) dependence.  相似文献   

8.
The temperature dependence of the heat capacity of crystal ferrocene dicarboxylic acid is studied in a precision adiabatic vacuum calorimeter in the range of 8 to 350 K. Its standard thermodynamic functions are calculated in the range of T → 0 to 350 K. The thermal and physical heat properties of ferrocene dicarboxylic acid are studied on a differential scanning calorimeter in the range of 260 to 573 K. The enthalpy of combustion for the investigated compound is measured in an isoperibol calorimeter. The standard thermodynamic functions of the formation of ferrocene dicarboxylic acid in the crystal state at 298.15 K are calculated.  相似文献   

9.
The molar heat capacity of the azeotropic mixture composed of water and benzene was measured by an adiabatic calorimeter in the temperature range from 80 to 320 K. The phase transitions took place in the temperature range from 265.409 to 275.165 K and 275.165 to 279.399 K. The phase transition temperatures were determined to be 272.945 and 278.339 K, which were corresponding to the solid-liquid phase transitions of water and benzene, respectively. The thermodynamic functions and the excess thermodynamic functions of the mixture relative to standard temperature 298.15 K were derived from the relationships of the thermodynamic functions and the function of the measured heat capacity with respect to temperature.  相似文献   

10.
A cyclic, bidentate hydroxamic acid binding unit based on an isoquinoline scaffold has been utilized for the synthesis of a hexadentate tripodal ligand based on the TREN backbone. This prototype for a new class of multidentate chelators forms mononuclear iron(III) complexes and one-dimensional coordination polymers with lanthanide(III) cations. The latter has been determined by single-crystal X-ray analysis of the cerium species. The solid-state structure in the monoclinic space group P2(1)/c (C(36)H(34)CeN(7)O(11), a = 12.341(2) A, b = 26.649(4) A, c = 10.621(2) A, alpha = gamma = 90 degrees, beta = 96.753(3) degrees, V = 3468.6(9) A3, Z = 4) exhibits a trigonal-dodecahedral environment around the cerium cation. The proof of concept for the versatility of the new scaffold has been shown by the modification of the crucial precursor 3-carboxyisocoumarin through electrophilic aromatic substitutions to yield the corresponding chlorosulfonated and nitrated analogues.  相似文献   

11.
The heat capacity of 4,4′-dinitrodiphenyl ether and 4-nitro-4′-biphenylcarboxylic acid were measured by adiabatic calorimetry (AC) in temperature ranges of 8–372 K and 10–372 K, respectively. The heat capacity of 4,4′-dinitrodiphenyl ether in the temperature range 323–500 K, the thermodynamic properties of fusion, and the purity of the ether were measured by differential scanning calorimetry (DSC). The main thermodynamic functions in the temperature range 5–370 K were calculated for both compounds using the heat capacities of adiabatic calorimetry. Related thermodynamic functions of 4,4′-dinitrodiphenyl ether in the temperature range 370–500 K were calculated on the basis of DSC data.  相似文献   

12.
5,5,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane (L) was synthesized and characterized. The kinetics of hydrolysis of bis(p-nitrophenyl)phosphate (BNPP) in the catalytic system containing macrocyclic ligand and cerium(III) was investigated. This catalytic system show high catalytic activity and better reproducibility and stability than other similar systems in the range of pH of around 5.6–7.2. The stoichiometry and spectral analysis showed that the real active species is the macrocyclic complex of cerium(III). Based on the analytical results of the specific absorption spectra, an intramolecular nucleophilic substitution mechanism for the catalytic hydrolysis of BNPP is proposed, a correlative kinetic mathematical model is established, and the corresponding thermodynamic and kinetic constants are calculated.  相似文献   

13.
14.
The heat capacities of isobutyl tert-butyl ether in crystalline, liquid, supercooled liquid, and glassy states were measured by vacuum adiabatic calorimetry over the temperature range from (7.68 to 353.42) K. The purity of the substance, the glass-transition temperature, the triple point and fusion temperatures, and the enthalpy and entropy of fusion were determined. Based on the experimental data, the thermodynamic functions (absolute entropy and changes of the enthalpy and Gibbs free energy) were calculated for the solid and liquid states over the temperature range studied and for the ideal gas state at T = 298.15 K. The ideal gas heat capacity and other thermodynamic functions in wide temperature range were calculated by statistical thermodynamics method using molecular parameters determined from density-functional theory. Empirical correction for coupling of rotating groups was used to calculate the internal rotational contributions to thermodynamic functions. This correction was found by fitting to the calorimetric entropy values.  相似文献   

15.
水-乙醇二元体系共沸混合物的热力学研究   总被引:2,自引:0,他引:2  
用全自动低温绝热量热计测定了水、乙醇以及水和乙醇组成的共沸混合物在不同温区的摩尔热容Cp,m. 建立了共沸混合物Cp,m与温度T的函数关系.结果表明,水和乙醇组成的共沸混合物在98.496 K发生玻璃态转化,在158.939 K 和270.95 K发生固-液相变.获得了其相应的相变焓和相变熵.计算了以298.15 K为基准的该共沸混合物的热力学函数和超额热力学函数.  相似文献   

16.
The behavior of the thermodynamic functions for the adsorption system krypton—microporous carbon sorbent ACC is described. The dependences of the differential molar isosteric heat of adsorption, entropy, enthalpy, heat capacity, and differential molar energy of the adsorption system on the adsorption equilibrium parameters were studied over the temperature range from 178 to 393 K and at pressures ranging from 1 to 6?106 Pa. Consideration of the non-ideality of gas phase and non-inertness of the adsorbent leads to a temperature dependence of the thermodynamic functions of the studied adsorption system, especially in the range of high pressures of the adsorptive. The non-ideality of the gas phase and the energetics of the adsorbent—adsorbate system exert the most significant effect on the thermodynamic functions. The non-inertness of the adsorbent in the investigated range of parameters of the adsorption system has a weak effect on the thermodynamic functions of adsorption. In the region of high filling of ACC micropores, the entropy increases, indicating the existence of processes, which change the structure of the adsorbate in the micropores, in particular, to form associates.  相似文献   

17.
The temperature dependence of the heat capacity of LiZr2(PO4)3 crystal phosphate is studied in an adiabatic vacuum calorimeter in the temperature range of 6 to 358 K. A phase transition caused by the transition of a low-temperature (triclinic) modification to a high-temperature (rhombohedral) modification is observed in the temperature range of 290–338 K and its standard thermodynamic characteristics are estimated and analyzed. Standard thermodynamic functions are calculated from experimental data: heat capacity, enthalpy, entropy, and Gibbs function in the range of T → 0 to 358 K. Fractal dimensionality D is calculated from the data on low-temperature (20 K ≤ T ≤ 50 K) heat capacity and the topology of the phosphate’s structure is estimated.  相似文献   

18.
The molar heat capacities of the binary mixture composed of water and n-butanol were measured with an adiabatic calorimeter in the temperature range 78–320 K. The functions of the heat capacity with respect to thermodynamic temperature were established. A glass transition, solid–solid phase transition and solid–liquid phase transition were observed. The corresponding enthalpy and entropy of the solid–liquid phase transition were calculated, respectively. The thermodynamic functions relative to a temperature of 298.15 K were derived based on the relationships of the thermodynamic functions and the function of the measured heat capacity with respect to temperature.  相似文献   

19.
The temperature dependence of the heat capacity C p o = f(T) of palladium oxide PdO(cr.) was studied for the first time in an adiabatic vacuum calorimeter in the range of 6.48–328.86 K. Standard thermodynamic functions C p o(T), H o(T) — H o(0), S o(T), and G o(T) — H o(0) in the range of T → 0 to 330 K (key quantities in different thermodynamic calculations with the participation of palladium compounds) were calculated on the basis of the experimental data. Based on an analysis of studies on determining the thermodynamic properties of PdO(cr.), the following values of absolute entropy, standard enthalpy, and Gibbs function of the formation of palladium oxide are recommended: S o(298.15) = 39.58 ± 0.15 J/(K mol), Δf H o(298.15) = −112.69 ± 0.32 kJ/mol, Δf G o(298.15) = −82.68 ± 0.35 kJ/mol. The stability of Pd(OH)2 (amorph.) with respect to PdO(cr.) was estimated.  相似文献   

20.
The thermodynamic properties of calcium and barium phosphides have been determined in the temperature range 1178–1537 K by a Knudsen effusion technique combined with massspectral analysis of the evaporation products.The specific heats of calcium and barium phosphides in the temperature range 118–863 K have been measured by means of a Mettler differential scanning calorimeter, TA-4000.The thermodynamic functions obtained in the present work can be recommended for thermodynamic calculations for the compounds studied in the present work.The authors are thankful to Yu. M. Berezovskaya for her assistance in preparing the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号